2D Anodes for Advanced Sodium Ion Batteries
October 26, 2016 | KAUSTEstimated reading time: 2 minutes

The mechanism of sodium ion storage in an important two-dimensional material could be a simpler and less toxic route to cheaper batteries, a team of KAUST researchers discovered.
Lithium ion batteries are the current standard power source for most portable electronic products. When this type of battery is charging, positively-charged lithium ions move from one electrode, the cathode, through an electrolyte to another electrode, which is called the anode. The electrodes are typically porous materials into which the ions become embedded through a process known as intercalation. When the battery is connected to a device, the ions perform the same process in reverse.
However, lithium is neither cheap nor abundant, so scientists are developing sodium ion batteries as a cost-effective alternative for rechargeable sources of power.
In both cases, the choice of electrode material is crucial: it has a significant influence on a battery’s energy capacity and its overall lifetime. However, materials that are good electrodes in lithium ion batteries may not be optimal for sodium ion batteries, so there is a need to identify and optimize new materials.
“Two-dimensional materials are potentially attractive anodes for sodium ion batteries due to their large surface area and ability to minimize volume changes during battery operation,” said Professor Husam Alshareef from the Material Science and Engineering Program at KAUST. “However, the sodium ion storage mechanism in this emerging class of anodes is not fully understood.”
Schematic illustration of the structure at the beginning (left) and the end (right) of the evolution during the sodiation process
Schematic illustration of the structure at the beginning (left) and the end (right) of the evolution during the sodiation process. (© Wiley)
Alshareef and colleagues developed a process for two-dimensional anodes for sodium ion batteries made from tin selenide (Advanced Energy Materials, "SnSe2 2D anodes for advanced sodium ion batteries"). They used a combination of experimental and computational studies to unlock the mechanism by which they store sodium ions.
Tin selenide has been synthesized before, but the production process involves complex chemical reactions performed at high temperatures that can require toxic materials.
Alshareef’s team tried a simpler hydrothermal method that uses a solution of sodium hydrogen selenide as a safe and stable source of selenium. They mixed this with tin and selenium and heated it in an oven at 180 degrees Celsius for 24 hours to produce nanosheets.
In-situ spectral studies during battery operation showed that tin selenide stores sodium ions by a two-step process involving both conversion and alloying reactions. This dual mechanism explains the high capacity the team could achieve using SnSe2 anodes.
“The new synthesis process resulted in the highest reported energy density of any transition metal selenide—515 milliampere-hours per gram after 500 charge–discharge cycles,” said Fan Zhang, a KAUST Ph.D. student and the lead author of the research paper.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.