New Optofluidic Technology Taps Power of Diatoms to Improve Sensor Performance
November 9, 2016 | Oregon State UniversityEstimated reading time: 2 minutes
Researchers at Oregon State University have combined one of nature’s tiny miracles, the diatom, with a version of inkjet printing and optical sensing to create an exceptional sensing device that may be up to 10 million times more sensitive than some other commonly used approaches.
Diatoms and inkjet printing are components of this "optofluidic" sensor created at Oregon State University. (Graphic courtesy of Oregon State University)
A patent has been approved on the new “optofluidic” technology, and the findings published in the journal Nanoscale ("Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica").
When implemented in working devices, this approach might improve biomedical sensing of cancer biomarkers; be used for extraordinarily precise forensics work; save the lives of military personnel in combat situations; detect illegal drugs; or help tell whether organic food is really pesticide free or not.
The enormous sensitivity and low cost of the technology may have endless applications, researchers say, ranging from health monitoring to environmental protection, biological experiments and other uses.
“Some existing sensors can detect compounds at levels of one part per billion, which sounds pretty good, but for many purposes that’s not good enough,” said Alan Wang, an OSU assistant professor of electrical engineering in the OSU College of Engineering, and corresponding author on the study.
“With this approach, we can detect some types of compounds at less than one part per trillion, about the level of a single molecule in a small sample. That’s really difficult. Aside from its sensitivity, the technology can also work with ultra-small samples, is fast, and should be very inexpensive to use.”
This system combines advanced optics with a fluidic system to identify compounds. With most conventional systems of this type, fluids must flow over a surface, and this limits the transport of specific molecules you might want to identify, Wang said.
The diatoms in this new technology, however, act as natural “photonic crystals.” They harness the forces of convection against diffusion to help accelerate and concentrate molecules in a space where photons from optical sensors can get trapped, interact with and identify the compound through optical signatures.
“A diatom is a natural, living type of phytoplankton that creates very precise, tiny structures,” Wang said. “When liquids are deposited on it with carefully controlled inkjet devices, the droplets evaporate quickly, but, in the process, carry the molecules of interest to the diatom surface. This is the key to increasing the sensitivity of the photonic measurements.”
The sensor technology, researchers say, can quickly and accurately identify what compounds are present, and approximately how much.
In one demonstration in this research, the scientists tried to identify trinitrotoluene, or TNT, one of the common ingredients in explosive devices – including the hidden mines that have caused numerous injuries and deaths in battle situations. TNT is a chemical with very low volatility, meaning it has limited evaporation, and comparatively few molecules escape that could allow detection. In a hidden bomb, it’s hard to find.
This new technology was one million more times sensitive at identifying TNT than other common approaches, Wang said. A monitor based on this approach, that could be fast and accurate in military situations, may one day help save lives, he said.
Suggested Items
Designing for Cost to Manufacture
11/21/2024 | Marcy LaRont, I-Connect007ICAPE's Richard Koensgen, a seasoned field application engineer with a rich background in PCB technology, shares his journey of working with customers and manufacturers through the intricacies of circuit board development and emphasizes the importance of early-stage collaboration with PCB designers. With a focus on tackling the most challenging aspects of PCB design and manufacturing, he discusses everything from layout considerations to the thermal challenges of today's technology when it comes to designing for cost.
OSI Systems Receives $11M Order for Electronic Assemblies
11/21/2024 | BUSINESS WIREOSI Systems, Inc announced that its Optoelectronics and Manufacturing division has received an order for approximately $11 million to provide critical electronic sub-assemblies for a leading-edge healthcare original equipment manufacturer (OEM), known for innovative and specialized medical solutions.
CHIPS for America Announces Up to $300M in Funding to Boost U.S. Semiconductor Packaging
11/21/2024 | U.S. Chamber of CommerceThe Biden-Harris Administration announced that the U.S. Department of Commerce (DOC) is entering negotiations to invest up to $300 million in advanced packaging research projects in Georgia, California, and Arizona to accelerate the development of cutting-edge technologies essential to the semiconductor industry.
NTT, Olympus Joint Demonstration Shows IOWN APN's Low-latency Capability
11/21/2024 | JCN NewswireNTT Corporation and Olympus Corporation announced that, following the start of their joint experiment in March of the world’s first cloud endoscope system which processes endoscopic videos on the cloud, they jointly established a cloud endoscopy system utilizing the IOWN APN technology.
Hon Hai Joins OpenUSD Alliance to Promote Standardized and Open Source Universal Scenario Description (USD) Technology
11/21/2024 | Hon Hai Technology GroupHon Hai Technology Group , the world’s largest technology manufacturing and service provider, announced that it has joined the Alliance for OpenUSD (AOUSD ) to support the construction of a 3D ecosystem and promote Cooperation among various industries around the world promotes the standardization of Universal Scene Description (USD ).