Study Finds Molecule That Functions as Cellular 'Logic Board'
November 11, 2016 | University of TokyoEstimated reading time: 2 minutes

Researchers at the University of Tokyo found that a protein called parafibromin acts like a computer logic board within the cell by integrating and converting multiple disparate signals from the outside into appropriate responses. This finding paves the way for the development of innovative therapeutics and preventive measures against cancer, congenital developmental diseases, and other conditions caused by the faulty integration of signals within the cell.
Mechanism of signal integration by parafibromin
Parafibromin competitively interacts with just one of the transcriptional coactivators, Wnt signal coactivator (red) or Hedgehog signal coactivator (blue); therefore, only one of the target genes of the two signals is transcribed in a mutually exclusive manner. On the other hand, the Notch signal coactivator (green) simultaneously binds to parafibromin with other coactivators, thereby promoting cooperated activation of multiple target genes.
A variety of extracellular stimuli trigger a succession of signals transmitted along pathways within the cell, eventually giving rise to appropriate cellular responses such as cell proliferation and cell death. In multicellular organisms, morphogen signaling pathways, which help determine the structure and location of tissues and other materials, mediate communication between cells, thereby playing essential roles in embryonic development and maintaining internal stability, known as homeostasis, of adult tissues. However, very little is known about the mechanism through which a single cell perceives and integrates signals simultaneously activated in response to two or more distinct morphogens, the chemicals involved in cell development during tissue formation and differentiation, so as to generate appropriate transcriptional output and adequate cellular responses.
In the present study, the research group led by Professor Masanori Hatakeyama and Project Researcher Ippei Kikuchi at the University of Tokyo Graduate School of Medicine discovered that parafibromin, a protein found in the cell’s nucleus, interacts with the transcriptional coactivators, proteins involved in transmitting genetic information, of three major morphogen signaling pathways (Wnt, Hedgehog, and Notch pathways)—either in a competitive or cooperative manner—and expresses genes appropriate to the cellular context. Thus, the researchers concluded that parafibromin is a molecule that functions much like the logic board of a computer, integrating signal inputs transmitted by distinct devices and converting them into appropriate outputs.
“Even in humans, deregulation of signaling pathways leads to a variety of diseases, including cancer and developmental disorders,” says Hatakeyema. He continues, “We hope the present work paves the way for the development of new therapeutics for such intractable diseases, as well as leading toward prevention.”
Suggested Items
Tips to Master the ‘Black Magic’ of RF Design
05/01/2025 | Andy Shaughnessy, Design007For this issue on RF design, I reached out to Zach Peterson, founder of Northwest Engineering Solutions, an engineering design services company in Portland, Oregon. You can find some of Zach’s RF design presentations on YouTube; he does a great job breaking down these complex ideas for PCB designers who are new to the RF side of things. I asked Zach to discuss the challenges facing RF designers, the relevant material considerations, and the layout tips and techniques that can help RF designers master this “black magic” technology.
The EEcosystem and Dr. Eric Bogatin Launch Free Masterclass for Electronics Engineers
05/01/2025 | The EEcosystemThe EEcosystem, a podcast media and education brand serving professional electronics engineers, is proud to announce the launch of a new online learning platform: The EEcosystem Electronics Masterclass. The platform debuts with Transmission Lines 101, a free course created in partnership with world-renowned signal integrity expert Dr. Eric Bogatin. The course will be available starting May 1, 2025.
NEXT Semiconductor Technologies Collaborates with BAE Systems to Develop Next Generation Space-Qualified Chips
04/28/2025 | PRNewswireNEXT Semiconductor Technologies is collaborating with BAE Systems to accelerate the insertion of its latest ultra-wideband antenna processor units (APUs) into high-performing radiation-hardened electronic subsystems to support future space missions.
Elementary Mr. Watson: Navigating RF—A Glide Path Approach to Design Success
04/24/2025 | John Watson -- Column: Elementary, Mr. WatsonOn a flight, I can always tell when we begin our descent because that subtle drop in my stomach tells me the altitude has changed. Landing an airplane involves a gradual, precise process called the glide path. It descends at the correct speed and 3-degree angle to touch down smoothly and safely on the runway without bouncing or coming to a sudden stop. Pilots use specialized tools like the Instrument Landing System (ILS) or GPS to stay on the correct path. Lights on the ground, called PAPI lights, help pilots know if they are too high or too low.
Designers Notebook: Layer Stackup Planning for RF Circuit Boards
04/17/2025 | Vern Solberg -- Column: Designer's NotebookWhen designing multiple layer circuits requiring impedance control, the circuit board designer will work closely with an engineering specialist cognizant of RF printed circuit board design and layout, including mixed-signal applications.