Efficient Approach for Tracking Physical Activity with Wearable Health Devices
November 16, 2016 | North Carolina State UniversityEstimated reading time: 2 minutes

Researchers from North Carolina State University have developed an energy-efficient technique for accurately tracking a user's physical activity based on data from wearable devices.
One goal for wearable health technologies is to identify and track physical activity by the wearer. However, accomplishing this goal requires a trade-off between accuracy and the power needed for data analysis and storage, which is a challenge, given the limited power available for wearable devices.
"Tracking physical activity is important because it is a key component for placing other health data in context," says Edgar Lobaton, an assistant professor of electrical and computer engineering at NC State and senior author of a paper on the new work. "For example, a spike in heart rate is normal when exercising, but can be an indicator of health problems in other circumstances."
Devising technology for monitoring physical activity involves addressing two challenges. First, the program needs to know how much data to process when assessing activity. For example, looking at all of the data collected over a 10-second increment, or tau, takes twice as much computing power as evaluating all of the data over a five-second tau.
The second challenge is how to store that information. One solution to this is to lump similar activity profiles together under one heading. For example, certain data signatures may all be grouped together under "running," while others may be lumped together as "walking." The challenge here is to find a formula that allows the program to identify meaningful profiles (e.g., running, walking or sitting): if the formula is too general, the profiles are so broad as to be meaningless; and if the formula is too specific, you get so many activity profiles that it is difficult to store all of the relevant data.
To explore these challenges, the research team had graduate students come into a motion-capture lab and perform five different activities: golfing, biking, walking, waving and sitting.
The researchers then evaluated the resulting data using taus of zero seconds (i.e., one data point), two seconds, four seconds, and so on, all the way up to 40 seconds.
The researchers then experimented with different parameters for classifying activity data into specific profiles.
"Based on this specific set of experimental data, we found that we could accurately identify the five relevant activities using a tau of six seconds," Lobaton says. "This means we could identify activities and store related data efficiently.
"This is a proof-of-concept study, and we're in the process of determining how well this approach would work using more real-world data," Lobaton says. "However, we're optimistic that this approach will give us the best opportunity to track and record physical activity data in a practical way that provides meaningful information to users of wearable health monitoring devices."
The paper, "Hierarchical Activity Clustering Analysis for Robust Graphical Structure Recovery," will be presented at the 2016 IEEE Global Conference on Signal and Information Processing, being held Dec. 7-9 in Washington, D.C. Lead author of the paper is Namita Lokare, a Ph.D. student at NC State. The co-authors are Daniel Benavides and Sahil Juneja, of NC State.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Soaring Inference AI Demand Triggers Severe Nearline HDD Shortages; QLC SSD Shipments Poised for Breakout in 2026
09/16/2025 | TrendForceTrendForce’s latest investigations reveal that the massive data volumes generated by AI are straining the global infrastructure of data center storage.
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.