Manipulating Quantum Order
November 17, 2016 | CaltechEstimated reading time: 2 minutes

Cool a material to sufficiently low temperatures and it will seek some form of collective order. Add quantum mechanics or confine the geometry and the states of matter that emerge can be exotic, including electrons whose spins arrange themselves in spirals, pinwheels, or crystals.
In a recent pair of publications in Nature Communications, teams led by Caltech's Thomas F. Rosenbaum, professor of physics and holder of the Sonja and William Davidow Presidential Chair, report how they have combined magnetic fields and large pressures to not only induce these states at ultra-low temperatures, but also to nudge them between competing types of quantum order.
Rosenbaum is an expert on the quantum mechanical nature of materials—the physics of electronic, magnetic, and optical materials at the atomic level—that are best observed at temperatures near absolute zero. In the first of the two papers, published in June and led by Sara Haravifard, now on the faculty at Duke University, the team squeezed a collection of magnetic quantum particles in a pressure cell at temperatures near absolute zero and at magnetic fields more than 50,000 times stronger than the earth's field, and discovered the formation of new types of crystal patterns. The geometry of these crystal patterns not only reveals the underlying quantum mechanics of the interactions between the magnetic particles, but also bears on the kinds of collective states allowed for atomic systems, such as those that flow without friction.
In the work in the second paper, published in October and led by Caltech graduate student Yishu Wang and Argonne scientist Yejun Feng, Rosenbaum and colleagues also investigate how materials balance on the knife edge between different types of quantum order. In this case, however, the researchers focus on the relationship between magnetism and superconductivity—the complete disappearance of electrical resistance—and how those properties relate to one another when the material changes state under the pressures achievable in a diamond anvil cell.
The researchers used the Advanced Photon Source at Argonne National Laboratory to study the magnetic properties of the transition metal manganese phosphide (MnP) to see how it might be possible to manipulate the ordering of the spins—the intrinsic magnetic moments of the electrons—to either enhance or suppress the onset of superconductivity.
Superconductivity is a state in a material in which there is no resistance to electric current and all magnetic fields are expelled. This behavior arises from a so-called "macroscopic quantum state" where all the electrons in a material act in concert to move cooperatively through the material without energy loss.
Rosenbaum and his colleagues delineated a spiral pattern of the magnetic moments of the electrons in MnP that could be tuned by increasing pressure to induce superconductivity. Here again the particular geometry of the magnetic pattern held the key to the ultimate state that the material reached. "The experiments reveal manifest opportunities to find new low-energy states via substitutions for manganese and phosphorus with neighboring elements from the periodic table such as chromium and arsenic. The taxonomy of allowable quantum states and the ability to manipulate them unites approaches across quantum physics and technology," Rosenbaum says.
The first paper, "Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2," was published on June 20, 2016. Coauthors include Daniel M. Silevitch, research professor of physics at Caltech. Work at Caltech was supported by the National Science Foundation. The research in the second paper, entitled "Spiral magnetic order and pressure-induced superconductivity in transition metal compounds" and published on October 6, was funded at Caltech by a U.S. Department of Energy Basic Energy Sciences award.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.