Re-Energizing the Lithium-Ion Battery
November 23, 2016 | University of California - BerkeleyEstimated reading time: 1 minute

High costs, slow recharging rates, and limited lifetimes restrict the utility of lithium-ion batteries for electric vehicles, storing electricity from wind or solar power, and other applications. Scientists are resolving these deficiencies; however, few have focused on a key interaction that influences battery behavior—how the lithium ions move from one electrode to the other. Researchers at the Lawrence Berkeley National Laboratory and the University of California-Berkeley have taken up the challenge. Using experiments and theoretical calculations, they showed that the lithium ion’s journey involves more intimate contact with the electrolyte molecules than previously thought.
These findings suggest that computational models need to be refined to account for the higher number of electrolyte molecules surrounding the lithium ion (its solvation structure) when representing the lithium ion-electrolyte interaction. The improved modeling of the lithium ion solvation structure could allow lithium-ion batteries to take on new applications.
In recent years, lithium-ion batteries have saturated the electronics market due to their widespread use in cell phones, laptop computers, and tablets. As they comprise such a crucial aspect of modern technology, billions of dollars have been spent to maximize the usefulness of the lithium-ion battery. Yet shortcomings, such as high cost, slow recharging rates, and limited lifetimes, restrict the utility of these batteries. Various aspects of the lithium-ion battery have been targeted by research seeking to remedy these deficiencies; however, little effort has been focused on discerning exactly how the lithium ions move from one electrode to the other. Researchers at the Lawrence Berkeley National Laboratory and the University of California-Berkeley have honed in on this very aspect by investigating the detailed solvation structure of the lithium ion. Using liquid microjets to measure x-ray absorption spectra, interpreted using first-principles theory calculations, this group has determined that the lithium ion has a solvation number of 4.5, which varies from the expected tetrahedral structure. These findings suggest that future computational models should expand beyond the current tetrahedral model to improve upon the electrolytes within the battery. The improvement of the lithium-ion battery based on these findings could be another step towards making the batteries even more useful for large-scale applications.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Staying on Top of Signal Integrity Challenges
09/16/2025 | Andy Shaughnessy, Design007 MagazineOver the years, Kris Moyer has taught a variety of advanced PCB design classes, both online IPC courses and in-person classes at California State University-Sacramento, where he earned his degrees in electrical engineering. Much of his advanced curriculum focuses on signal integrity, so we asked Kris to discuss the trends he’s seeing in signal integrity today, the SI challenges facing PCB designers, and his go-to techniques for controlling or completely eliminating SI problems.
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.
The Road to Reliability: Why EV Electronics Matter More Than Ever
09/16/2025 | Stanton Rak, SF Rak CompanyThe global transition to e-Mobility is redefining the design and reliability expectations of automotive electronics. Unlike their internal combustion engine (ICE) counterparts, EVs operate under "always-on" conditions and are subject to higher voltages, higher currents, and elevated thermal loads. These systems also incorporate exponentially more sensors, control units, and advanced power electronics, often tightly packed in thermally constrained spaces.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.