New Tabletop Technique Probes Outermost Electrons of Atoms Deep Inside Solids
November 23, 2016 | SLAC National Accelerator LaboratoryEstimated reading time: 4 minutes

It may be unwise to judge a book by its cover, but you can tell a lot about a material from the outermost electrons in its atoms.
“These outermost electrons, known as valence electrons, are the most important players in forming chemical bonds and actually define almost every property of a solid – electrical, thermal, conductive,” said Shambhu Ghimire, an associate staff scientist at the Department of Energy’s SLAC National Accelerator Laboratory.
In experiments at SLAC, intense laser light (red) shining through a magnesium oxide crystal excited the outermost “valence” electrons of oxygen atoms deep inside it. When these electrons hit neighboring atoms, the collisions generated light of much higher energy and shorter wavelengths (blue) through a process called high harmonic generation. Rotating the crystal and analyzing the generated light revealed the density of the neighboring atom’s valence electrons, which could not be directly seen before. (Image: SLAC National Accelerator Laboratory)
Now Ghimire and two colleagues at the Stanford PULSE Institute have invented a new way to probe the valence electrons of atoms deep inside a crystalline solid.
In a report in Nature Physics ("Anisotropic high-harmonic generation in bulk crystals"), they describe using laser light to excite some of the valence electrons, steer them around inside the crystal and bounce them off other atoms. This produces high-energy bursts of light that are invisible to our eyes, but carry clues to the material’s atomic structure and function.
“This will change the world of imaging the inside of crystalline solids,” Ghimire said, “much as scanning tunneling microscopy, or STM, changed the atomic-scale imaging of surfaces.”
intense laser light (red) shining through a magnesium oxide crystal excited the outermost valence electrons of oxygen atoms deep inside it
A New Way to Look at Atoms in Solids
Invented in the early 1980s, STM was a revolutionary method that allowed scientists to make the first images of individual atoms and their bonds. It was honored with the 1986 Nobel Prize in physics.
But STM senses valence electrons from only the top two or three layers of atoms in a material. A flow of those electrons into the instrument’s tip creates a current that allows it to measure the distance between the tip and the surface, tracing the bumps where atoms poke up and the valleys between them. This creates an image of the atoms and yields information about the bonds that hold them together.
Now the new technique will give scientists the same level of access to the valence electrons deep inside the solid.
The experiments, carried out in a SLAC laser lab by PULSE postdoctoral researcher Yong Sing You, involved crystals of magnesium oxide or magnesia, a common mineral used to make cement, preserve library books and clean up contaminated soil, among a host of other things.
These crystals also have the ability to shift incoming laser light to much shorter wavelengths and higher energies – much as pressing down on a guitar string produces a higher note – through a process called high harmonic generation, or HHG.
Steering Electrons to Generate Light
In this case, the scientists carefully adjusted the incoming infrared laser beam so it would excite valence electrons in the crystal’s oxygen atoms. Those electrons oscillated, like vibrating guitar strings, and generated light of much shorter wavelengths – in the extreme ultraviolet range – through HHG.
But when they adjusted the polarization of the laser beam to steer the excited electrons along different trajectories within the crystal, they discovered that HHG only took place when an electron hit a neighboring atom, and was most efficient when it hit the atom dead center. Further, the wavelength of the harmonically generated light coming out – which was 13 to 21 times shorter than the light that went in – revealed the density of the neighboring atom’s valence electrons, the size of the atom and even whether it was an atom of oxygen or magnesium.
“It’s difficult to home in on the valence electrons with current methods of measuring electron charge density, which typically use X-ray or electron diffraction,” said study co-author David Reis, an associate professor at SLAC and Stanford and deputy director of PULSE. “So demonstrating that we can do that with atomic-scale sensitivity in a tabletop laser experiment is an important milestone.”
Alan Fry, division director for laser science and technology at SLAC’s Linac Coherent Light Source X-ray laser, was not involved in the experiment but offered kudos “to the team that developed this technique and who continue to do exciting and interesting research with it.”
While this approach may be limited to materials that can generate light through HHG, he said, “it can still tell you a lot about the electronic structure inside those solids, and in principle could give us a better understanding of other materials that don't have same response. Understanding simple systems like this builds a foundation for understanding more complex systems.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
MEMS & Imaging Sensors Summit to Spotlight Sensing Revolution for Europe’s Leadership
09/11/2025 | SEMIIndustry experts will gather November 19-20 at the SEMI MEMS & Imaging Sensors Summit 2025 to explore the latest breakthroughs in AI-driven MEMS and imaging optimization, AR/VR technologies, and advanced sensor solutions for critical defence applications.
Direct Imaging System Market Size to Hit $4.30B by 2032, Driven by Increasing Demand for High-Precision PCB Manufacturing
09/11/2025 | Globe NewswireAccording to the SNS Insider, “The Direct Imaging System Market size was valued at $2.21 Billion in 2024 and is projected to reach $4.30 Billion by 2032, growing at a CAGR of 8.68% during 2025-2032.”
I-Connect007’s Editor’s Choice: Five Must-Reads for the Week
07/04/2025 | Marcy LaRont, I-Connect007For our industry, we have seen several bullish market announcements over the past few weeks, including one this week by IDC on the massive growth in the global server market. We’re also closely watching global trade and nearshoring. One good example of successful nearshoring is Rehm Thermal Systems, which celebrates its 10th anniversary in Mexico and the official opening of its new building in Guadalajara.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.