Screening of Databases is The Basis for Developing New Energy Materials
December 8, 2016 | DTUEstimated reading time: 2 minutes

The growing volume of computer-generated data and calculations makes it possible to quickly develop new energy materials. A recently published screening focuses on materials with a light-absorbing effect.
Two researchers from The Villum Center for the Science of Sustainable Fuels and Chemicals at DTU Physics were recently asked to write a perspective for the journal Science. Researchers do not receive such requests or such recognition every day. This was the result of their work on the calculation of atomic structures and the structure of materials.
“The findings of innumerable laboratory experiments have been published and compiled in databases in recent decades, and thousands of computer-based calculations have been run using this data. The available knowledge is vast, and our perspective suggests that, despite the great challenges presented by the large volumes of data—which are not directly comparable and compatible—some very promising opportunities do also present themselves,” explains Professor Karsten W. Jacobsen.
Exciting developments in computer-generated data open up new opportunities
In their research, Karsten W. Jacobsen and Professor Kristian S. Thygesen found that an interesting development is taking place.
“At DTU Physics, we have created our own databases with computer-based calculations, and we participate in the big international NoMaD database. Both of these activities are based on DFT, Density Functional Theory, which provides information on the properties of a material by calculating its electronic structure. The challenge has been the use of common standards, so that all researchers work in identical file formats and can therefore incorporate and build on others’ results. This is where there is currently an exciting move towards a level of conformity that is opening up new opportunities,” Karsten W Jacobsen continues.
Calculations used to develop materials for catalytic converters for the fuels of the future
The two researchers’ work at the Villum Center for the Science of Sustainable Fuels and Chemicals involves developing better materials for light absorption for use in photoelectrochemistry—and ultimately fuels. Alternatives to oil for aviation, for example, are one of the two major challenges in connection with phasing out fossil fuels on which the Center is working, and the development of better catalytic converters is also part of the solution.
“Specifically, we have now completed the screening of a number of sulphur-containing materials in relation to light absorption, and can begin to work out which computer calculations we want to run in the coming years in conjunction with the physical experiments on materials that are also carried out in the Villum Center,” Karsten W. Jacobsen concludes.
In relation to the computer-generated calculations, Karsten W. Jacobsen and Kristian P. Thygesen expect fast, but not exponential development in the future. The existing calculations may be characterized as the lowest-hanging fruit. From now on the calculations will become increasingly complex and thus also take longer to complete.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.