Scientists Use Graphene and Toy Silly Putty to Make State-of-the-Art Sensors
December 12, 2016 | Trinity College DublinEstimated reading time: 1 minute

Researchers in AMBER, the Science Foundation Ireland-funded materials science research centre, hosted in Trinity College Dublin, have used the wonder material graphene to make the novelty children’s material silly putty (polysilicone) conduct electricity -- creating extremely sensitive sensors.
This world-first research, led by Trinity's Professor of Chemical Physics, Jonathan Coleman, in collaboration with Professor Robert Young of the University of Manchester, offers exciting possibilities for applications in new, inexpensive devices and diagnostics in medicine and other sectors. The AMBER team’s findings have been published this week in the leading journal Science.
Professor Coleman, Investigator in AMBER and Trinity’s School of Physics along with postdoctoral researcher Conor Boland, discovered that the electrical resistance of putty infused with graphene (“G-putty”) was extremely sensitive to the slightest deformation or impact.
They mounted the G-putty onto the chest and neck of human subjects and used it to measure breathing, pulse and even blood pressure. It showed unprecedented sensitivity as a sensor for strain and pressure, being hundreds of times more sensitive than normal sensors. The G-putty also works as a very sensitive impact sensor, able to detect the footsteps of small spiders. The scientists believe that this material will find applications in a range of medical devices.
Professor Coleman said, “What we are excited about is the unexpected behaviour we found when we added graphene to the polymer, a cross-linked polysilicone. This material as well known as the children’s toy silly putty. It is different from familiar materials in that it flows like a viscous liquid when deformed slowly but bounces like an elastic solid when thrown against a surface. When we added the graphene to the silly putty, it caused it to conduct electricity, but in a very unusual way. The electrical resistance of the G-putty was very sensitive to deformation with the resistance increasing sharply on even the slightest strain or impact. Unusually, the resistance slowly returned close to its original value as the putty self-healed over time.”
“While a common application has been to add graphene to plastics to improve the electrical, mechanical, thermal or barrier properties, the resultant composites have generally performed as expected without any great surprises. The behaviour we found with G-putty has not been found in any other composite material. This unique discovery will open up major possibilities in sensor manufacturing worldwide.”
Suggested Items
Foxconn's Tiger Leap Combining Nature and Technology in Ecological Roof Garden
04/23/2025 | FoxconnHon Hai Technology Group, the world's largest technology manufacturing and service provider, has actively responded to the United Nations Sustainable Development Goals (SDGs).
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Bridging the Gap Between PCB Designers and Fabricators
04/03/2025 | Stephen V. Chavez, Siemens EDAWith today’s advanced EDA tools, designing complex PCBs in the virtual world does not necessarily mean they can be built in the real world. This makes the relationship between a PCB designer and a fabricator pivotal to the success of a project. In keeping with solid design for manufacturing (DFM) practices, clear and frequent communication is needed to dial and lock in design constraints that meet expectations while addressing manufacturing concerns.
Hitachi Announces Completion of New Production Facility for Semiconductor Manufacturing Equipment
04/01/2025 | JCN NewswireHitachi High-Tech Corporation announced that the new production facility for semiconductormanufacturing equipment (etch systems), which had been under construction since December 2023 in the Kasado area (Kudamatsu City, Yamaguchi Prefecture), was completed and started the operation on March 17, 2025.
Paige Fiet: From Emerging Engineer to Quality at TTM
03/19/2025 | Marcy LaRont, PCB007 MagazinePaige Fiet is a graduate of the IPC Emerging Engineer program and now works at TTM Technologies in Logan, Utah. She was an IPC Student Board Member and has been a columnist for I-Connect007. She is a stellar example and an encouragement to other young engineers about how to be successful in your early career.