New Properties Discovered in Atom-Wide Troughs
December 15, 2016 | U.S. Department of EnergyEstimated reading time: 1 minute

Could adding defects make a good material even better? Scientists have found that linear defects in a promising thin film create one-atom-thick metallic wires. These wires cross the otherwise intact material, offering a way to channel electrons and photons, tiny packets of light. A multidisciplinary team made this discovery using resources at the Molecular Foundry and the Advanced Light Source.
The team worked with transition metal dichalcogenides (TMDs) because the materials have exceptional optical characteristics. This research found that a single TMD layer could emit as much light as an equivalent material that is 10,000 times thicker, paving the way toward smaller, more efficient devices. Further, the team found that engineering defects (purposely introducing missing or displaced atoms) into TMDs could modify their intrinsic properties. These modifications might improve the material or lead to altogether new useful properties for future energy conversion, quantum computing and communication systems.
In the world of semiconductors, impurities and defects can be a good thing. They modify the properties of materials such as silicon, and scientists can exploit these properties to develop better transistors for laptop computers, smart phones, and solar cells. Recently, scientists discovered a new class of semiconductor that is only three atoms thick and extends in a two-dimensional plane, similar to graphene. These two-dimensional semiconductors, called transition metal dichalcogenides (TMDs), have exceptional optical characteristics. They can be developed into ultra-sensitive photodetectors, and a single TMD layer emits as much light as a three-dimensional TMD crystal composed of 10,000 layers.
For the past several years, scientists have wondered if impurities and defects could also modify TMDs’ intrinsic properties, perhaps in ways that improve the semiconductor or lead to new functionalities. Scientists at the Molecular Foundry, in collaboration with researchers at the Advanced Light Source, have taken a big step towards answering this question. They found—to their surprise—how substantial linear defects in TMDs create entirely new properties. Some of these properties indicate that defects in TMDs might even mediate superconducting states.
The team synthesized three-atom-thick, clean layers of molybdenum diselenide, which is a type of TMD. They then studied the material with a microscope that can visualize atoms and their electronic wave functions. They discovered a linear defect formed by a line of missing selenium atoms. This defect creates one-atom-thick metallic wires to transport electrons or photons across the otherwise intact semiconductor like veins.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Panel Driver IC Price Decline Slows in 1H25; Gold Prices, China Subsidies, and U.S.-China Tariffs Emerge as Key Variables
04/28/2025 | TrendForceTrendForce’s latest investigation finds that China’s subsidy policies and rising concerns over reciprocal tariffs are reshaping brand strategies in the panel market, indirectly influencing price trends for panel driver ICs.