Exotic Quantum Technology Realized Using Normal Silicon
December 16, 2016 | RIKENEstimated reading time: 2 minutes

A device created by RIKEN researchers demonstrates that it is possible to realize the building block of quantum computers in ordinary, ‘garden-variety’ silicon used in the modern electronics industry (Science Advances, "A fault-tolerant addressable spin qubit in a natural silicon quantum dot").
Electrons trapped between metal contacts on silicon offer a scalable qubit, the building block of quantum computers. The two small blue dots represent the double quantum dot. (Reproduced from Ref. 1 and licensed under CC BY 4.0 © 2016 K. Takeda et al.)
Conventional computers process information using electronic ones and zeros known as bits. In an analogous way, quantum computers process ‘qubits’. However, in the quirky world of quantum physics, qubits can be both one and zero at the same time. This property of qubits enables quantum computers to solve problems that are intractable for traditional computers.
While many candidates for generating qubits have been investigated, those that use the rotation of an electron (its ‘spin’) confined in a nanostructure are the most promising for realizing compact, scalable devices.
To facilitate the uptake of this technology, these qubits should be compatible with the materials and processes currently used in the electronics industry. Previous work had shown that the operation of spin qubits can be improved by using forms, or isotopes, of silicon that contain more neutrons than the most common form of silicon. But it would be expensive to introduce such exotic isotopes of silicon into commercial electronics manufacture.
Kenta Takeda, Seigo Tarucha and their colleagues at the RIKEN Center for Emergent Matter Science have developed a spin qubit in industry-standard ‘natural’ silicon. They achieved this by confining an electron in a so-called double quantum dot, which traps two charged particles between electric fields generated by electrical contacts (Fig.).
The ideal qubit must be pliable enough to quickly change state on demand, but sufficiently robust that it maintains this state for as long as needed to perform computational tasks.
“Because qubits use sensitive quantum states, they are susceptible to noise from the environment,” explains Takeda. “To protect the qubit states from noise, it is necessary to perform quantum error correction. But this works only when the fidelity—a common figure of merit for qubits—is high enough.”
The team improved the fidelity of their device by using a micromagnet to speed up qubit operation. The micromagnet generated a magnetic field large enough to induce strong coupling of the spins of the two trapped electrons. This is vital because, unlike other semiconductors such as gallium arsenide, silicon does not have an intrinsic spin driving mechanism. The micromagnet allowed the researchers to control the spin in their double quantum dot 100 times faster than previously possible.
“In this work, we achieved fault-tolerant fidelity for single-qubit operation,” says Takeda. “We hope next to demonstrate high-fidelity two-qubit operation to build up universal quantum computers.”
Suggested Items
DuPont Reports First Quarter 2025 Results
05/02/2025 | PRNewswireDuPont announced its financial results for the first quarter ended March 31, 2025.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
Alternative Manufacturing Inc. (AMI) Appoints Gregory Picard New Business Development Manager
05/01/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing Inc. (AMI) is pleased to announce the appointment of Mr. Gregory Picard as our new Business Development Manager. Picard brings a wealth of experience in Sales and Business Development, having worked with some of the most prominent names in the industry.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Discover the Future of AI in Test and Inspection in the May 2025 Issue of SMT007 Magazine
05/01/2025 | I-Connect007 Editorial TeamAre you ready to explore the cutting-edge advancements in AI shaping the electronics manufacturing industry through test and inspection? The May 2025 issue of SMT007 Magazine provides insights, innovations, and perspectives from today's top experts you won't find anywhere else.