CHESS Facility Helps Scale Up Solar Cells
December 16, 2016 | Cornell UniversityEstimated reading time: 3 minutes

Scientists and engineers are constantly working to improve the performance of solar cells. Rather than changing their formulas by trial and error, they would like to understand the chemistry that happens as their recipes cook.
Visiting scientists from the University of Virginia have used the facilities of the Cornell High Energy Synchrotron Source (CHESS) to observe their chemistry in action. By firing high-intensity X-rays into a sample in a process known as X-ray crystallography, CHESS scientists took a series of snapshots of a material as it crystallized, showing how changes in the formula affect the process of crystal growth.
“To be really technologically relevant,” said Joshua Choi, M.Eng. ’07, M.S. ’10, Ph.D. ’12, assistant professor of chemical engineering at the University of Virginia, “we need to be able to scale up this process while maintaining or even improving the efficiency of the solar cell. To do that, we need to understand how this material crystallizes and grows from solution into a thin film.”
A long-range goal, he added, is to be able to move the process from the laboratory to commercial manufacturing.
Choi brought his experiments to Ithaca in collaboration with Paulette Clancy, the Samuel W. and M. Diane Bodman Professor in Chemical Engineering; Blaire Sorenson, a master’s student in Clancy’s research group; and Detlef Smilgies, senior research associate at the Wilson Synchrotron Lab.
Choi works with a new class of materials called “metal halide perovskites,” or MHPs, compounds of lead with chlorine, bromine or iodine, which have aroused recent interest. The performance of recently crafted MHP solar cells rivals conventional silicon solar cells. Dissolved in an organic liquid, MHP materials can be sprayed as a thin film on a glass or silicon substrate, offering an inexpensive way to make large solar collectors. The film also can be deposited on flexible, lightweight materials, making it possible to produce rolls of thin solar cell material that could be applied to houses, cars or wearables.
As the film sprayed on a surface dries, the material crystallizes into an orderly crystal lattice of interconnected atoms. How the crystal is structured can make a big difference in performance, and engineers have found that the choice of solvent or adding some additional reagents can change the structure.
In a series of experiments with several different formulations, CHESS researchers placed newly coated cells in the path of a beam of high-energy X-rays. X-rays passing through a grid of atoms will emerge in a pattern from which the structure of the crystal lattice can be determined. (Ordinary light can’t do this, because its wavelength is longer than the dimensions of atoms so it passes them by without interacting. X-rays have a vastly shorter wavelength.)
A series of snapshots taken every few seconds while the films were drying showed how the crystals formed. The tests showed that using a solvent called tetrahydrothiophene oxide led to more uniform crystal growth and enabled the experimenters to control the orientation of the crystal, which has a major effect on the voltage the cell produces. “These findings” Choi said, “highlight the importance of understanding and controlling the MHP thin film formation processes to rationally improve the performance of solar cells.”
Choi, with University of Virginia doctoral student Justin Girard and undergraduate researcher Benjamin Foley, will present the findings at the 66th meeting of the American Crystallographic Association, July 22-26 in Denver. Choi’s group also collaborated with scientists at Wake Forest University and the University of Pittsburgh on a paper, “Controlling Nucleation, Growth, and Orientation of the Metal Halide Perovskite Thin Films with Rationally Selected Additives,” released in the online edition of the Journal Materials Chemistry A.
CHESS is – almost literally – a “spinoff” of the Cornell Electron Storage Ring (CESR), a synchrotron buried under Upper Alumni Field where electrons circling in a ring a half mile in circumference are accelerated to high energies for experiments in particle physics. When electrons change direction, as in following a curve, they give off some of their energy as X-rays, so-called “synchrotron radiation,” which CHESS taps at 11 experimental stations around the ring. In addition to doing crystallography, the facility has produced incredibly detailed X-ray images of insects and microorganisms, sometimes observing biochemical processes in progress.
It is one of only two high-energy synchrotron sources in the U.S. (the other is the Advanced Photon Source at Argonne National Laboratory) and one of only five in the world. In the last fiscal year, 1,071 visiting researchers conducted 3,243 unique experiments. A significant effort of the staff is aimed at developing synchrotron radiation experimental facilities and methods.
CHESS is supported by grants from the Division of Materials Research of the National Science Foundation. Choi’s research is funded by NASA and the U.S. Department of Energy.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.