Solved: Mystery That Was Holding Back Development of Next-Generation Solar Cells
December 22, 2016 | Imperial College LondonEstimated reading time: 2 minutes

Scientists have identified an unexpected cause of poor performance in a new class of flexible and cheap solar cells, bringing them closer to market.
Solar cells are the building blocks of photovoltaic solar panels. They are made from light-absorbing materials that convert sunlight into electricity. Normally the light-absorbing material is silicon, which has an energy-intensive manufacturing process.
In the new study, scientists looked at solar cells made from materials known as perovskites. These can be produced cheaply from chemicals mixed into printable or sprayable ink, which then crystallises to form light-absorbing films.
However, perovskite films contain charged defects that are likely to impair their performance. Slow movement of these defects is thought to be responsible for a process known as hysteresis, which leads to irregularities in the efficiency with which light is converted to electrical current.
Light-generated electricity exits the solar cell in the form of electrons to be harnessed. This is done via ‘contacts’ that sandwich the light-absorbing film. Previously, scientists have managed to remove hysteresis by using more ‘selective’ contact materials that ensure a one-way flow of electrons out of the solar cell.
In theory, changing these contact materials shouldn’t have any effect on the movement of the charged defects within the perovskite, so it has remained a mystery why this appeared to ‘fix’ the hysteresis problem.
Now researchers from Imperial College London and collaborators have developed new experiments to follow which direction electrons move in the solar cell when they are generated with a short pulse of light.
They found that the mobile charged defects are still present even in solar cells with very efficient contact materials, despite these cells showing no hysteresis. Hysteresis was only found when cells suffered the combined effects of both the defects and poor selectivity at the contacts. The results are published today in the journal Nature Communications.
Whodunit?
Dr Piers Barnes, from the Department of Physics at Imperial, who led the study said: “Previously there was debate over whether the charged defects or the contact materials were responsible for hysteresis. A little bit like Agatha Christie’s Murder on the Orient Express, we’ve shown that they both ‘did it’.
“The field has made amazing progress, and we’re on the right track by reducing problems with the contacts. However, the results also show that improving the contacts is only part of the solution, and we still need to be concerned about the charged defects moving inside the perovskite.”
The charged defects may provide a chemical weak point which could lead to the eventual degradation of the perovskite film. This raises a potential concern over the solar cells’ long term stability.
Dr Barnes said: “The new techniques we have designed will allow the community to assess the extent of charged defect movement to help the future research needed to improve the stability and bring this technology to market.”
Now that the causes of hysteresis have been uncovered, there are a few challenges that must be overcome before perovskite solar cells can be commercialised. One concern with current perovskites is that they contain small amounts of lead in their chemical structure. A replacement metal will probably have to be found before they are deemed safe at larger scales.
Scientists will also have to reproduce their laboratory results with life-sized solar panels. However, the crucial challenge will be to find a way of improving the long-term stability of the perovskite materials.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.