Miniscule Amounts of Impurities in Vacuum Greatly Affecting OLED Lifetime
December 29, 2016 | Kyushu UniversityEstimated reading time: 2 minutes
Reproducibility is a necessity for science but has often eluded researchers studying the lifetime of organic light-emitting diodes (OLEDs). Recent research from Japan sheds new light on why: impurities present in the vacuum chamber during fabrication but in amounts so small that they are easily overlooked.
Organic light-emitting diodes use a stack of organic layers to convert electricity into light, and these organic layers are most commonly fabricated by heating source materials in vacuum to evaporate and deposit them onto a lower temperature substrate.
While issues affecting the efficiency of OLEDs are already well understood, a complete picture of exactly how and why OLEDs degrade and lose brightness over time is still missing.
Complicating matters is that devices fabricated with seemingly the same procedures and conditions but by different research groups often degrade at vastly different rates even when the initial performance is the same.
Unable to attribute these reproducibility issues to known sources such as the amount of residual water in the chamber and the purity of the starting materials, a report published online in Scientific Reports ("Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes"), adds a new piece to the puzzle by focusing on the analysis of the environment in the vacuum chamber.
"Although we often idealize vacuums as being clean environments, we detected many impurities floating in the vacuum even when the deposition chamber is at room temperature," says lead author Hiroshi Fujimoto, chief researcher at Fukuoka i3-Center for Organic Photonics and Electronics Research (i3-OPERA) and visiting associate professor of Kyushu University.
Because of these impurities in the deposition chamber, the researchers found that the time until an OLED under operation dims by a given amount because of degradation, known as the lifetime, sharply increased for OLEDs that spent a shorter time in the deposition chamber during fabrication.
This trend remained even after considering changes in residual water and source material purity, indicating the importance of controlling and minimizing the device fabrication time, a rarely discussed parameter.
Research partners at Sumika Chemical Analysis Service Ltd. (SCAS) confirmed an increase of accumulated impurities with time by analyzing the materials that deposited on extremely clean silicon wafers that were stored in the deposition chamber when OLED materials were not being evaporated.
Using a technique called liquid chromatography-mass spectrometry, the researchers found that many of the impurities could be traced to previously deposited materials and plasticizers from the vacuum chamber components.
"Really small amounts of these impurities get incorporated into the fabricated devices and are causing large changes in the lifetime," says Professor Chihaya Adachi, director of Kyushu University's Center for Organic Photonics and Electronics Research (OPERA), which also took part in the study.
In fact, the new results suggest that the impurities amount to less than even a single molecular layer.
To improve lifetime reproducibility, a practice often adopted in industry is the use of dedicated deposition chambers for specific materials, but this can be difficult in academic labs, where often only a limited number of deposition systems are available for testing a wide variety of new materials.
In these cases, deposition chamber design and cleaning in addition to control of the deposition time are especially important.
"This is an excellent reminder of just how careful we need to be to do good, reproducible science," comments Professor Adachi.
Suggested Items
Coherent Evaluates Strategic Alternatives for Its Advanced Lithium-Ion Battery Recycling Technology
12/13/2024 | Globe NewswireCoherent Corp., a global leader in materials, networking, and lasers, today announced that as a result of an ongoing strategic portfolio assessment, the company will evaluate strategic alternatives for its Streamlined Hydrometallurgical Advanced Recycling Process (SHARP™) technology to efficiently recover and recycle critical metals from lithium-ion batteries (LiBs).
Battery Prices Stabilize in November, Slight Increase Expected in 2025
12/12/2024 | TrendForceTrendForce’s latest research reveals that China's EV sales continued to grow throughout November 2024, driving demand for EV batteries. LFP battery prices remained stable, while prices for ternary batteries saw a slight decline.
SolderKing Celebrates a Year of Expansion, Innovation, and Sustainability Achievements
12/09/2024 | SolderKing Assembly Materials Ltd,SolderKing Assembly Materials Ltd, a leading UK-based manufacturer of soldering materials and consumables, has wrapped up 2024 with a series of milestones that reflect its ongoing growth and commitment to innovation.
EpoxySet to Exhibit at MD&M West
12/05/2024 | epoxySetEpoxySet Inc. will be exhibiting at MD&M West on February 4-6, 2025 in the Anaheim Convention Center, booth 617.
iSQUARED Expands Specialized Material Offerings Validated for Stratasys 3D Printers
12/03/2024 | BUSINESS WIREiSQUARED, a wholly-owned subsidiary of Stratasys, announced today an expansion of its portfolio of materials validated for use in Stratasys 3D printers, alongside the launch of a marketplace for pre-owned Stratasys machines.