Satellites at Risk: Space Weather Models Need Better Validation
January 3, 2017 | GFZEstimated reading time: 2 minutes
Accuracy of space weather prediction depends strongly on the quality of the models. A team led by the GFZ German Research Centre for Geosciences demonstrates how errors in the algorithms can lead to wrong predictions. The authors present a new algorithm for modelling of the electron flux in the geosynchronous orbit which is important for telecommunication and navigation satellites.
The sun ejects plasma into space, which is shielded by the Earth’s magnetic field. However, some of these energetic particles can penetrate this protective shell, deposit in the satellite shielding, create accumulation of charges and damage electronics. Since the intensity of the electron flux depends on solar activity, scientists strive to predict this „space weather“ as it provides essential information to satellite operators.
Similar to terrestrial weather forecast, the space weather forecast is provided by the models. The better the algorithm, the better the accuracy of the model. Nikita Aseev and Yuri Shprits from the GFZ and colleagues from UCLA present validation of a space weather prediction model. They focus on the geosynchronous orbit, that is used by telecommunication and meteorological satellites.
In the AGU Space Weather Journal they showed how the accuracy of the radiation belt model can affect the prediction of space weather events. "Errors in the algorithms can lead to wrong conclusions and inaccurate predictions,“ says Nikita Aseev. This can have far-reaching consequences. Either the spacecraft is threatened by massive electron flux which suddenly hits the satellite, or the operator faces economic loss by turning off the craft for safety reasons – and it turns out that there was no space weather event at all.
In particular, the authors used a very accurate numerical algorithm to model the electron transport in the radiation belt. To validate the algorithm, the scientists divided the sophisticated model into several simpler problems, each describing only one distinct physical process affecting the electrons, e.g., convection and diffusion in the belt. All simplified problems were tested in order to get the exact solution and to investigate errors induced by the space weather model.
"Space weather is a relatively young field," says GFZ Professor Yuri Shprits, group leader of “Magnetospheric Physics” in Section “Earth's Magnetic Field" and co-author of the paper. "We need to set new standards on how to validate the space models. This study provides an excellent example of how that could be done.“
Moreover, the editors of the AGU journal praise the study. „The manuscript highlights the need for detailed assessment of the stability and accuracy of models in the field of space weather and provides a great example in terms of models that predict relativistic electron fluxes at geosynchronous orbit. This is an important environment because those particles are a hazard to the many operational spacecraft that utilize geosynchronous orbit.“ (nes)
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
Amplifying Innovation: New Podcast Series Spotlights Electronics Industry Leaders
10/08/2025 | I-Connect007In the debut episode, “Building Reliability: KOKI’s Approach to Solder Joint Challenges,” host Marcy LaRont speaks with Shantanu Joshi, Head of Customer Solutions and Operational Excellence at KOKI Solder America. They explore how advanced materials, such as crack-free fluxes and zero-flux-residue solder pastes, are addressing issues like voiding, heat dissipation, and solder joint reliability in demanding applications, where failure can result in costly repairs or even catastrophic loss.
KYZEN’s AQUANOX A4618 and AQUANOX A4727 Highlighted at SMTA Empire Expo & Tech Forum
09/24/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, will exhibit at the SMTA Empire Expo & Tech Forum, scheduled for Wednesday, Oct. 1 at the DoubleTree by Hilton Syracuse in Syracuse, NY.
KYZEN to Feature High-Reliability MICRONOX Chemistries at IMAPS Symposium
09/10/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, is pleased to announce its participation at the International Symposium on Microelectronics or IMAPS Symposium, taking place September 29-October 3 at Town & Country Resort in San Diego, CA.
MacDermid Alpha Presents at SMTA New Delhi, Bangalore Chapter, on Flux–OSP Interaction
09/09/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha contributes technical insights on OSP solderability at the Bangalore Chapter, SMTA reinforcing commitment to knowledge-sharing and industry collaboration.