Light Strikes Gold
January 10, 2017 | Department of Energy, Office of ScienceEstimated reading time: 1 minute

Using light to sculpt tiny crystals able to do big jobs has garnered attention in the scientific community since scientists used such a process to create silver prisms in 2001. However, scientists have been unable to apply the process to gold—until now. A recent study describes a strategy that enables synthesis of desirable gold crystals using a chemical called polyvinylpyrrolidone (PVP) in combination with exposure to visible light.
Scientists could use the findings to optimize properties of gold nanocrystals for certain industrial and medical applications.
Gold is highly stable and has other attractive features suitable for various industrial and medical applications, but controlling the size and shape of single-crystal nanostructures has been difficult. In a recent study, a team of researchers from the University of Florida, Department of Energy’s (DOE) Environmental Molecular Sciences Laboratory (EMSL), and Brookhaven National Laboratory (BNL) revealed a photochemical strategy that enables growth of gold nanocrystals with controlled properties. The researchers found they could obtain a high yield of hexagonal or triangular gold nanoprisms by mixing organic polymer polyvinylpyrrolidone (PVP) in an aqueous solution containing gold nanocrystal seeds and tetrachloroauric acid (HAuCl4).
To understand the underlying mechanisms, the researchers probed the spatial distribution of PVP molecules on individual gold nanoprisms using nanoscale secondary ion mass spectrometry at EMSL, a DOE Office of Science user facility. They also used EMSL’s scanning probe atomic force microscope (AFM) compound microscope as well as the dynamic force AFM. Surprisingly, the results revealed PVP preferentially adsorbs onto defects along the perimeter of the gold nanocrystals instead of the top and bottom facets as previously suggested. Upon exposure to visible light, the adsorbed PVP directed photo-excited electrons as they reduced aqueous HAuCl4− ions to add metal to the growing nanocrystal.
This study broadens the applicability of this photochemical strategy beyond synthesis of silver-based nanostructures and reveals novel insights into the molecular mechanisms driving the growth of gold nanocrystals. Scientists could use the findings to tailor the shape and size of gold nanocrystals for specific industrial and medical applications.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Medical Device OEM/ODM/CDMO Industry Forecast: CAGR of 7.5% to 2031 Amid Growing Healthcare Innovation
09/17/2025 | PRNewswireThe global market for Medical Device OEM/ODM/CDMO was valued at US$ 115434 million in the year 2024 and is projected to reach a revised size of US$ 191760 million by 2031, growing at a CAGR of 7.5% during the forecast period.
Armstrong Asia Signs MOU with Checkmate Capital Group to Explore Strategic Collaboration
09/15/2025 | GlobeNewswireArmstrong Asia, a leading Singapore-based manufacturer of flexible material solutions with 16 factories across 7 countries in Asia, has signed a Memorandum of Understanding (MOU) with Checkmate Capital Group, LLC (“Checkmate Capital”), a U.S.-based investment and advisory firm active in the Asia-Pacific and North American regions, focused on cross-border transactions in the life sciences, medical technology, and other industries.
Nordson MEDICAL Divests Contract Manufacturing, Refocuses on Proprietary Components
09/03/2025 | BUSINESS WIRENordson Corporation has completed the divestiture of select product lines within its medical contract manufacturing business to Quasar Medical.
Medical Device Contract Manufacturing Market Worth $140.84 Billion by 2030 with 10.9% CAGR
08/25/2025 | PRNewswireThe global Medical Device Contract Manufacturing Market, valued at US$78.58 billion in 2024, stood at US$83.77 billion in 2025 and is projected to advance at a resilient CAGR of 10.9% from 2025 to 2030, culminating in a forecasted valuation of US$140.84 billion by the end of the period.
TT Electronics Achieves ISO 13485 Medical Certification at Mexicali EMS Facility
06/27/2025 | TT ElectronicsThis milestone underscores TT Electronics’ commitment to delivering high-quality, compliant, and reliable manufacturing solutions to its global customers in healthcare and life sciences.