Graphene Able to Transport Huge Currents on the Nano Scale
January 12, 2017 | TU WienEstimated reading time: 3 minutes

Once again, graphene has proven itself to be a rather special material: an international research team led by Professor Fritz Aumayr from the Institute of Applied Physics at TU Wien was able to demonstrate that the electrons in graphene are extremely mobile and react very quickly. Impacting xenon ions with a particularly high electric charge on a graphene film causes a large number of electrons to be torn away from the graphene in a very precise spot. However, the material was able to replace the electrons within some femtoseconds. This resulted in extremely high currents, which would not be maintained under normal circumstances. Its extraordinary electronic properties make graphene a very promising candidate for future applications in the field of electronics.
The Helmholtz-Center Dresden-Rossendorf and the University of Duisburg-Essen participated in the experiment alongside TU Wien. The international team received theoretical support from Paris and San Sebastian as well as from in-house staff (Institute of Theoretical Physics at TU Wien).
Highly charged ions
‘We work with extremely highly-charged xenon ions,’ explains Elisabeth Gruber, a PhD student from Professor Aumayr’s research team. ‘Up to 35 electrons are removed from the xenon atoms, meaning the atoms have a high positive electric charge.’
These ions are then fired at a free-standing single layer of graphene, which is clamped between microscopically small brackets. ‘The xenon ion penetrates the graphene film, thereby knocking a carbon atom out of the graphene – but that has very little effect, as the gap that has opened up in the graphene is then refilled with another carbon atom,’ explains Elisabeth Gruber. ‘For us, what is much more interesting is how the electrical field of the highly charged ion affects the electrons in the graphene film.’
This happens even before the highly charged xenon ion collides with the graphene film. As the highly charged ion is approaching it starts tearing electrons away from the graphene due to its extremely strong electric field. By the time the ion has fully passed through the graphene layer, it has a positive charge of less than 10, compared to over 30 when it started out. The ion is able to extract more than 20 electrons from a tiny area of the graphene film.
This means that electrons are now missing from the graphene layer, so the carbon atoms surrounding the point of impact of the xenon ions are positively charged. ‘What you would expect to happen now is for these positively charged carbon ions to repel one another, flying off in what is called a Coulomb explosion and leaving a large gap in the material,’ says Richard Wilhelm from the Helmholtz-Center Dresden-Rossendorf, who currently works at TU Wien as a postdoctoral assistant. ‘But astoundingly, that is not the case. The positive charge in the graphene is neutralised almost instantaneously.’
This is only possible because a sufficient number of electrons can be replaced in the graphene within an extremely short time frame of several femtoseconds (quadrillionths of a second). ‘The electronic response of the material to the disruption caused by the xenon ion is extremely rapid. Strong currents from neighbouring regions of the graphene film promptly resupply electrons before an explosion is caused by the positive charges repelling one another,’ explains Elisabeth Gruber. ‘The current density is around 1000 times higher than that which would lead to the destruction of the material under normal circumstances – but over these distances and time scales, graphene can withstand such extreme currents without suffering any damage.’
Ultra-fast electronics
This extremely high electron mobility in graphene is of great significance for a number of potential applications: ‘The hope is that for this very reason, it will be possible to use graphene to build ultra-fast electronics. Graphene also appears to be excellently suited for use in optics, for example in connecting optical and electronic components,’ says Aumayr.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Alternative Manufacturing, Inc. (AMI) Announces Commitment to Excellence in Industrial, Defense, Aerospace, Renewables, and Robotics Markets
09/16/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing, Inc. (AMI), a 100% employee-owned contract manufacturer, proudly reaffirms its leadership in the electronics manufacturing services (EMS) industry with a continued commitment to delivering high-quality PCBAs and box builds across the industrial, defense, aerospace, renewable energy, and robotics markets.
Advint Incorporated Brings Artificial Intelligence to Electroplating Training
09/11/2025 | Advint IncorporatedAdvint Incorporated is introducing a new dimension to its electroplating training programs: the integration of Artificial Intelligence (AI). This initiative reflects the company’s commitment to providing PCB fabricators and manufacturers in the USA and Canada with training that is practical, forward-looking, and directly relevant to today’s production challenges.
Elementary Mr. Watson: Running the Signal Gauntlet
09/11/2025 | John Watson -- Column: Elementary, Mr. WatsonIf you’ve ever run a military obstacle course, you know it’s less “fun fitness challenge” and more “how can we inflict as much pain in the shortest time possible?” You start fresh—chest out, lungs full of confidence, thinking you might even look good doing this—and 10 seconds later, you’re questioning all your life choices.
It's Only Common Sense: The Evolution of Prospecting
09/08/2025 | Dan Beaulieu -- Column: It's Only Common SenseCold calling isn’t dead. I don’t care what the LinkedIn gurus or the TikTok “sales coaches” say. Picking up the phone and talking to another human being is still one of the fastest ways to grow your business. But (and it’s a big but), cold calling is different now. The world and buyers have changed. You can’t smile-and-dial like it’s 1987, reading the same tired script, hoping the gatekeeper is too bored to block you. If you’re still cold calling the old way—no research, relationship, or relevance—you’re showing up to a gunfight with a butter knife.
Elementary Mr. Watson: Routing Hunger Games—May the Traces Be Ever in Your Favor
08/26/2025 | John Watson -- Column: Elementary, Mr. WatsonI’d like to share a harsh truth, and I say this as a friend: PCB designers are often their own worst enemy. It’s rarely the complexity of the circuit, the last-minute changes from mechanical, the limited enclosure space, or the ever-expanding list of design rules that send projects to the dust heap of failed boards. More often, it's our own decisions, made too quickly and narrowly, and with too little foresight, that sabotage an otherwise good design.