Flexible Ferroelectrics Bring Two Material Worlds Together
January 17, 2017 | Argonne National LaboratoryEstimated reading time: 2 minutes

Until recently, “flexible ferroelectrics” could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy’s (DOE) Argonne National Laboratory in collaboration with researchers at Northwestern University, scientists have pioneered a new class of materials with advanced functionalities that moves the idea from the realm of irony into reality.
A scanning electron microscopy image of flexible haloimidazole crystals, which were found to show both ferroelectric and piezoelectric properties. (Image by Seungbum Hong/Argonne National Laboratory.)
Ferroelectrics are a useful type of material that is found in capacitors that are used in sensors, as well as computer memory and RFID cards. Their special properties originate from the fact that they contain charged regions polarized in a specific orientation, which can be controlled with an external electric field. But they’ve also had a big drawback as engineers try to use them in new inventions.
“Ferroelectric materials are known for being quite brittle, and so it has always been a big challenge to make them mechanically flexible,” said Argonne nanoscientist Seungbum Hong, who helped to lead the research. “Because ferroelectricity and this kind of flexibility are relatively rare properties to see on their own, to have both ferroelectricity and flexibility in this new material is basically unprecedented.”
Previous generations of ferroelectric materials were primarily ceramic, Hong said, which made them fairly brittle. In the new material, the crystal planes at the atomic level tend to slip past one another, adding to the material’s ductility.
One advantage of flexible ferroelectrics comes from the fact that all ferroelectric materials are also piezoelectric, which means they can convert an applied mechanical force into an electrical signal, or vice versa; for example, when you flick a lighter to generate a spark. Having more flexible ferroelectrics could enable a greater response from a smaller input.
With flexible ferroelectrics, scientists and engineers may have the opportunity to adapt these materials for a host of new and improved uses, including precision actuators for atomic force microscopy, ultrasonic imaging sensors and emitters for medical applications and even sensors for some automotive applications.
For data storage, the impact may be even greater. “There’s a very large information density potential with ferroelectric storage,” Hong said. “This could make a big difference as we think about future generations of the data cloud.”
An article based on the research, “Flexible ferroelectric organic crystals,” was published online in Nature Communications in October. One of the lead Northwestern authors of the study, Sir Fraser Stoddart, received the 2016 Nobel Prize in Chemistry for his work on molecular machines.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.