Scientists to Develop Liquid Antennas
January 17, 2017 | University of LiverpoolEstimated reading time: 2 minutes

University of Liverpool researchers have been awarded £578k funding from the Engineering and Physical Sciences Research Council (EPSRC) to develop liquid antennas which have the potential to transform modern radio communications and radar.
Antennas convert radio waves into electrical signals and are an essential component in mobile and wireless products from smart phones to radar. Traditionally antenna are made out of materials such as copper which although have good conductive properties are hard to reconfigure with limited bandwidth, as well as being large, heavy and expensive.
As the `Internet of Things’ and 5G become more of a reality, there is a need to develop a new type of antenna which is small, transparent and has better reconfigurability than conventional metal antennas.
It is known that water can be used as an antenna and has potential to overcome many of the problems facing traditional metal antenna. However, water becomes ice once the temperature goes below 0 degree C.
This research project will bring together radio engineering experts from the Department of Electrical Engineering & Electronics (Professor Huang’s team) with Material Scientists in the Department of Chemistry (Professor Xiao’s team), to identify the most suitable liquid materials which can be used as antenna.
The liquids will be tested for low loss, thermal and mechanical stability, whether they can work in temperatures ranging from -30 to +60 degree C, if they transmit the correct frequency range (from kHz to GHz) and have Radio Frequency and microwave power range up to 100 kW.
The project will also investigate how to design and make compact and efficient liquid antennas which are flexible or reconfigurable in terms of the main antenna parameters (such as the operational frequency, radiation pattern, and size) and suitable for a wide range of real world applications.
Professor Yi Huang, an international expert in radio engineering who is leading the research, said: “This original and transformative approach is able to meet the demands of the next generation of mobile devices, and the opportunities afforded by the `Internet of Things’.
“This research project aims to go one step towards developing a novel type of antenna by bringing together new knowledge in material science with radio engineering expertise in order to provide an alternative compact reconfigurable and/or flexible device to the wireless world and meet the demands from the telecommunications industry.”
The research is funded by the EPSRC and also involves industrial partners BAE Systems and Huawei.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.