For First Time Ever, X-Ray Imaging Captures Material Defect Process
January 18, 2017 | Argonne National LaboratoryEstimated reading time: 3 minutes

From blacksmiths forging iron to artisans blowing glass, humans have for centuries been changing the properties of materials to build better tools – from iron horseshoes and swords to glass jars and medicine vials.
To map out changes in the metal palladium on the nanoscale, researchers used the diffraction patterns of X-rays. (Image by Mark Lopez/Argonne National Laboratory.)
In modern life, new materials are created to improve today’s items, such as stronger steel for skyscrapers and more reliable semiconductors for cell phones.
Now, researchers at the Department of Energy’s (DOE) Argonne National Laboratory have discovered a new approach to detail the formation of these material changes at the atomic scale and in near-real time, an important step that could assist in engineering better and stronger new materials.
In a study published Jan. 16 in Nature Materials, researchers at Argonne’s Advanced Photon Source, a DOE Office of Science User Facility, reveal they have captured – for the first time ever – images of the creation of structural defects in palladium when the metal is exposed to hydrogen.
This imaging capability will help researchers validate models that predict the behavior of materials and how they form defects. Defect engineering is the practice of intentionally creating defects within a material in order to change the material’s properties. This knowledge is key to engineering better, stronger and more reliable materials for buildings, semiconductors, batteries, technological devices and many other items and tools.
“Defect engineering is based on the idea that you can take something you already know the properties of and, by putting in defects or imperfections, engineer things with improved properties,” said Argonne scholar Andrew Ulvestad, one of the authors of the study. “The practice applies not only to metals but any material that has a crystal structure, like those found in solar cells and battery cathodes.”
Defect engineering is used to optimize material design across a variety of fields, but it is most commonly associated with the development of semiconductors. Semiconductor materials, like silicon, are used as electrical components; they form the foundation for most of our modern day electronics, including laptops and mobile phones.
In a process known as “doping,” manufacturers create defects in these materials by adding impurities in order to manipulate their electrical properties for various technological uses.
While manufacturers know they can change the properties of various materials to get the attributes they want, the processes that govern these changes are not always clear.
To increase the understanding of such processes, Argonne researchers focused specifically on defects forming on the nanoscale. Defects, interfaces and fluctuations at this very small level can provide critical insight into the functionalities of materials, such as their thermal, electronic and mechanical properties, on a larger scale.
To capture the formation of defects, the Argonne team took a nanostructured sample of palladium and injected, or infused, it with hydrogen at high-pressure. At the same time, they exposed the sample to powerful X-rays at the Advanced Photon Source.
Upon hitting the palladium crystal, the X-rays scattered, and their dispersion pattern was captured by a detector and used to calculate the changes in the position of atoms within the palladium structure. Essentially, this process enabled researchers to “see” deformations within the material.
“In some ways, we got the one-in-a-million shot, because defects occurring within the crystal don’t always happen due to the complex nature of the process,” said Argonne physicist Ross Harder, another author in the study.
The changes shown in the scans exemplify the numerous ways in which defects can alter the properties of materials and how they respond to external stimuli. For instance, the defects that formed altered the pressures at which palladium could store and release hydrogen, knowledge that could be useful for hydrogen storage, sensing and purification applications, the researchers said.
Defect engineering approaches are already being used to study other systems, including battery cathode nanoparticles. However, the study led by Ulvestad and Harder is the first to capture the formation of defects as they are happening.
“What we’ve done is create a roadmap for other researchers. We’ve shown them a way to model this system and systems that have similar dynamics,” Ulvestad said.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.