Recreating Conditions Inside Stars in the Laboratory with Compact Lasers
January 19, 2017 | LLNLEstimated reading time: 2 minutes

Using compact lasers, a team including Lawrence Livermore National Laboratory (LLNL) scientists has created pressures more than a billion atmospheres, equivalent to the pressure in the center of a star.
These conditions of extreme pressure and energy density have previously been created in the laboratory only with the world's largest lasers, which are the size of stadiums. But in new research, Colorado State University (link is external) (CSU) in collaboration with LLNL scientists have conducted an experiment that offers a new path to creating such extreme conditions with much smaller, room-sized lasers -- using intense, ultra-short laser pulses irradiating arrays of aligned nanowires.
The experiments, led by CSU Professor Jorge Rocca, accurately measured how deeply these extreme energies penetrate the nanostructures. The team made these measurements by monitoring the characteristic X-rays emitted from nanowire arrays, in which the material composition changes with depth. Based on extrapolation from these experiments with numerical modeling, it is predicted that even higher pressures -- by a factor of 100 -- can be created by using higher intensity lasers in the future.
LLNL scientists specifically helped with the setup of the experiment and with the numerical models that relate the pressure and energy density achieved in both the current and proposed higher-pressure experiments.
The results, published in the Jan. 11 edition of the journal, Science Advances (link is external), open a path to obtaining unprecedented pressures and energy densities in the laboratory with compact lasers. The work could open new inquiry into ultra-high energy-density physics; how highly charged atoms behave in dense plasmas; and how light propagates at ultrahigh pressures, temperatures and densities.
Creating matter in the ultra-high energy-density regime could inform the study of laser-driven fusion, advance understanding of atomic processes in astrophysical and extreme laboratory environments and lead to efficient conversion of optical laser light into bright flashes of X-rays. The ability to create such matter using smaller facilities would make extreme plasma regimes more accessible for fundamental studies and applications.
The Lawrence Livermore team and CSU are onducting related experiments on LLNL's Titan and Comet lasers. The goal of these experiments, funded by the Laboratory Directed Research and Development (LDRD) program, is to scale up the basic method in the current research to higher energy laser pulses (by a factor of about 100).
The work was a multi-institutional effort lthat included CSU students Clayton Bargsten, Reed Hollinger, Alex Rockwood, and David Keiss, and research scientists Vyacheslav Shlyapsev, Yong Wang and Shoujun Wang. Co-authorship included Richard London, Riccardo Tommasini and Jaebum Park from LLNL; Maria Gabriela Capeluto from the University of Buenos Aires; Vural Kaymak and Alexander Pukhov from Heinrich-Heine University; and Michael Busquet and Marcel Klapisch from Artep Inc.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Honeywell Advances Technology for the European Defense Sector
04/29/2025 | HoneywellHoneywell has received two research grants to execute projects aimed at advancing avionics and cybersecurity capabilities for the European defense sector.
Real Time with... IPC APEX EXPO 2025: Winner of the IPC Best Student Poster Award
04/29/2025 | Real Time with...IPC APEX EXPOSebastian Carrillo, winner of the Best Student Technical Poster Award, shares insights on his research in nanotechnology and plasmonics. His work on a metal insulator nano array focuses on light-matter interactions at the nanoscale. With advancements in manufacturing, applications include sensing technologies and photovoltaic systems. Sebastian discusses his project involving simulations and optical experiments. His career goals are in research, and he encourages students to seize academic opportunities.
ITRI Named a Top 100 Global Innovator for the Ninth Time
04/28/2025 | PRNewswireThe Industrial Technology Research Institute (ITRI) was officially honored at the 2025 Top 100 Global Innovators Award Ceremony hosted by Clarivate in Taipei.
Hon Hai Research Institute's Fourth-generation Semiconductor Application Reaches a New Milestone
04/21/2025 | FoxconnHon Hai Research Institute ( HHRI ) Semiconductor Research Institute has conducted cross-border cooperation with Yang Ming Chiao Tung University and the University of Texas at Austin to invest in forward-looking research on fourth-generation semiconductors.