Recreating Conditions Inside Stars in the Laboratory with Compact Lasers
January 19, 2017 | LLNLEstimated reading time: 2 minutes

Using compact lasers, a team including Lawrence Livermore National Laboratory (LLNL) scientists has created pressures more than a billion atmospheres, equivalent to the pressure in the center of a star.
These conditions of extreme pressure and energy density have previously been created in the laboratory only with the world's largest lasers, which are the size of stadiums. But in new research, Colorado State University (link is external) (CSU) in collaboration with LLNL scientists have conducted an experiment that offers a new path to creating such extreme conditions with much smaller, room-sized lasers -- using intense, ultra-short laser pulses irradiating arrays of aligned nanowires.
The experiments, led by CSU Professor Jorge Rocca, accurately measured how deeply these extreme energies penetrate the nanostructures. The team made these measurements by monitoring the characteristic X-rays emitted from nanowire arrays, in which the material composition changes with depth. Based on extrapolation from these experiments with numerical modeling, it is predicted that even higher pressures -- by a factor of 100 -- can be created by using higher intensity lasers in the future.
LLNL scientists specifically helped with the setup of the experiment and with the numerical models that relate the pressure and energy density achieved in both the current and proposed higher-pressure experiments.
The results, published in the Jan. 11 edition of the journal, Science Advances (link is external), open a path to obtaining unprecedented pressures and energy densities in the laboratory with compact lasers. The work could open new inquiry into ultra-high energy-density physics; how highly charged atoms behave in dense plasmas; and how light propagates at ultrahigh pressures, temperatures and densities.
Creating matter in the ultra-high energy-density regime could inform the study of laser-driven fusion, advance understanding of atomic processes in astrophysical and extreme laboratory environments and lead to efficient conversion of optical laser light into bright flashes of X-rays. The ability to create such matter using smaller facilities would make extreme plasma regimes more accessible for fundamental studies and applications.
The Lawrence Livermore team and CSU are onducting related experiments on LLNL's Titan and Comet lasers. The goal of these experiments, funded by the Laboratory Directed Research and Development (LDRD) program, is to scale up the basic method in the current research to higher energy laser pulses (by a factor of about 100).
The work was a multi-institutional effort lthat included CSU students Clayton Bargsten, Reed Hollinger, Alex Rockwood, and David Keiss, and research scientists Vyacheslav Shlyapsev, Yong Wang and Shoujun Wang. Co-authorship included Richard London, Riccardo Tommasini and Jaebum Park from LLNL; Maria Gabriela Capeluto from the University of Buenos Aires; Vural Kaymak and Alexander Pukhov from Heinrich-Heine University; and Michael Busquet and Marcel Klapisch from Artep Inc.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
PC Graphics Add-in Board Shipments Up 27% QoQ in 2Q25
09/03/2025 | Jon Peddie ResearchAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 11.6 million units in Q2'25 and desktop PC CPUs shipments increased to 21.7 million units.
PC GPU Shipments Up 8.4% in 2Q25 on Pre-Tariff Demand
09/02/2025 | Jon Peddie ResearchJon Peddie Research reports the growth of the global PC-based graphics processor unit (GPU) market reached 74.7 million units in Q2'25, and PC CPU shipments increased to 66.9 million units.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.
Q2 Client CPU Shipments Increased 8% from Last Quarter, Up 13% YoY
08/13/2025 | Jon Peddie ResearchJon Peddie Research reports that the global client CPU market expanded for two quarters in a row, and in Q2’25, it showed unseasonal growth of 7.9% from last quarter, while server CPU shipments increased 22% year over year.
FuriosaAI Closes $125M Investment Round to Scale Production of Next-Gen AI Inference Chip
07/31/2025 | BUSINESS WIREFuriosaAI, a semiconductor company building a new foundation for AI compute, today announced it has completed a $125 million Series C bridge funding round. The investment continues a period of significant momentum for Furiosa as global demand for high-performance, efficient AI infrastructure soars.