New System for Exploring Superconductivity
January 20, 2017 | RIKENEstimated reading time: 2 minutes
The discovery in 1986 that a copper-based compound conducts electricity without resistance at much higher temperatures than conventional superconductors rocked the world of physics as it seemed like the holy grail of superconduction at room temperature was within reach. However, while cuprates that conduct at even higher temperatures have since been found, room-temperature superconduction still feels like a distant goal. Furthermore, despite three decades of feverish effort, scientists do not fully understand how cuprates superconduct.
A class of materials that could help to unlock the superconducting mechanism of cuprates is so-called Mott insulators. According to conventional band theory, these materials should conduct electricity, but the strong interactions between their electrons cause them to be insulators. However, they can be made superconducting by implanting, or doping, them with certain atoms.
One of the key puzzles surrounding cuprate Mott insulators is that they behave differently depending on whether they are doped with atoms that provide positive or negative charge carriers. Specifically, they superconduct under different conditions for dopants with excess positive charges (‘holes’) than for dopants with negatively charged electrons. Researchers would probe this asymmetry by adding holes or electrons to a sample, but the complex crystal framework of most cuprates prevents this.
Now, Yoshitaka Kawasugi from RIKEN’s Condensed Molecular Materials Laboratory and his colleagues have hit on a different approach—using organic Mott insulators in combination with field-effect transistors (Nature Communications, "Electron–hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator"). The simpler electronic band structure of these organic crystals makes it easier to spot electron–hole asymmetry. Furthermore, they can be doped precisely in the same sample by applying an electric field.
Theoretical calculations of the electrical properties of an organic Mott insulator reveal that asymmetric doping effects may act as a stepping stone toward high-temperature superconductivity. (Image: Kazuhiro Seki, RIKEN Computational Condensed Matter Physics Laboratory)
The team measured how electrons in the crystal moved at varying hole and electron concentrations for various temperatures. When they applied a magnetic field, a startling asymmetry emerged—the ‘Hall coefficients’, which quantify magnetic influences, were three times larger on the hole-doped side.
“When I first saw this asymmetry, I thought the experiment had failed,” recalls Kawasugi. “The detailed doping dependence also revealed that something special was happening,” he notes.
Theoretical calculations by RIKEN colleague Kazuhiro Seki helped uncover the reason for this anomaly—excess hole doping caused ‘pseudogap’ states to form. This is an exciting finding since it could indicate that superconductivity is not far off. “Pseudogaps can be precursors for the superconducting state if the transition temperature for the hole-doped side is much higher than the electron-doped case,” says Kawasugi. “Further electron and hole doping may induce this unconventional superconductivity.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.