Neutrons and a ‘Bit of Gold’ Uncover New Type of Quantum Phase Transition
January 23, 2017 | ORNLEstimated reading time: 4 minutes
When matter changes from solids to liquids to vapors, the changes are called phase transitions. Among the most interesting types are more exotic changes—quantum phase transitions—where the strange properties of quantum mechanics can bring about extraordinary changes in curious ways.
In a paper published in Physical Review Letters, a team of researchers led by the Department of Energy’s Oak Ridge National Laboratory reports the discovery of a new type of quantum phase transition. This unique transition happens at an elastic quantum critical point, or QCP, where the phase transition isn’t driven by thermal energy but instead by the quantum fluctuations of the atoms themselves.
The researchers used a combination of neutron and X-ray diffraction techniques, along with heat capacity measurements, to reveal how an elastic QCP can be found in a lanthanum-copper material by simply adding a little bit of gold.
Phase transitions associated with QCPs happen at near absolute zero temperature (about minus 460 degrees Fahrenheit), and are typically driven at that temperature via factors such as pressure, magnetic fields, or by substituting additional chemicals or elements in the material.
“We study QCPs because materials exhibit many strange and exciting behaviors near the zero temperature phase transition that can’t be explained by classical physics,” said lead author Lekh Poudel, a University of Tennessee graduate student working in ORNL’s Quantum Condensed Matter Division. “Our goal was to explore the possibility of a new type of QCP where the quantum motion alters the arrangement of atoms.
“Its existence had been theoretically predicted, but there hadn’t been any experimental proof until now,” he said. “We’re the first to establish that the elastic QCP does exist.”
“The study of quantum phase transitions is part of a larger effort to study quantum materials that have the potential to be used in devices that move us beyond our current technology paradigms and provide us with transformative functionalities,” said ORNL instrument scientist Andrew Christianson. “Quantum phase transitions are prototypes for generating new quantum phases of matter. In that vein, we’re always trying to identify new types of quantum phase transitions as they’re one of the ways we find new quantum mechanical behaviors in materials.”
To better understand the lanthanum-copper-gold’s unique behavior, the team used the Neutron Powder Diffractometer instrument at ORNL’s High Flux Isotope Reactor—a DOE Office of Science User Facility—to characterize the material’s structure, adding more gold to the composition with each subsequent measurement.
“Neutrons allowed us to look deep into the material at extremely low temperatures to see where the atoms were and how they were behaving,” Poudel said.
Researchers already knew that without the presence of gold, lanthanum-copper undergoes a phase transition at roughly 370 degrees Fahrenheit, where the system’s crystal structure changes upon cooling. When more gold is added, the transition temperature drops incrementally. Poudel and the team continued to add more gold until the transition temperature reached near absolute zero.
“Because gold atoms have a significantly larger atomic radius than copper atoms, when we add gold to the material, the mismatch of atoms inside the crystal structure suppresses the phase transition to a lower temperature by manipulating the structure’s internal strain. At near zero temperature, where thermal energy no longer plays a role in the phase transition, we can see the effects of quantum fluctuations in the motion of the atoms,” Poudel said.
The researchers also performed heat capacity measurements, which showed how much heat was needed to change the temperature of the material a few degrees and provided information about the fluctuations in the material.
“Importantly, the combined results show that this is the first example of a potential elastic QCP, where the electronic energy scales don’t bear any relevance to the quantum fluctuations,” said Andrew May, a researcher in ORNL’s Materials Science and Technology Division.
“This elastic QCP in LaCu6-xAux is a perfect example of where the fundamental behavior of a QCP can be studied without the complication of the charge of the electrons, which would probably not be possible in other examples of QCPs,” said Poudel. “Now that we’ve found them, we can more closely study the microscopic fluctuations driving this quantum phase transition and apply other techniques that will give us a greater depth of knowledge about these extraordinary behaviors.”
Of the research, University of Tennessee and ORNL joint faculty member David Mandrus said, “This work is a great example of how the University of Tennessee and ORNL can team up to produce first-rate science and deliver an unequaled educational opportunity for a highly motivated Ph.D. student. Success stories such as this will help to attract more young talent to Tennessee, which will benefit both UTK and ORNL.”
The paper’s authors include Lekh Poudel, Andrew F. May, Michael R. Koehler, Michael A. McGuire, Saikat Mukhopadhyay, Stuart Calder, Ryan E. Baumbach, Rupam Mukherjee, Deepak Sapkota, Clarina dela Cruz, David J. Singh, David Mandrus and Andrew D. Christianson.
Complementary contributions were made by the Departments of Physics & Astronomy and Material Science & Engineering at the University of Tennessee, the Department of Physics & Astronomy at the University of Missouri, the National High Magnetic Field Laboratory at Florida State University and Argonne National Laboratory’s Advanced Photon Source, a DOE Office of Science User Facility.
The research was supported by DOE’s Office of Science, DOE’s S3TEC Energy Frontier Research Center, and the National Science Foundation.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.