Carbon-Free Energy From Solar Water Splitting
January 24, 2017 | LLNLEstimated reading time: 1 minute

A Lawrence Livermore National Laboratory (LLNL) scientist and collaborators are fine tuning the mechanisms to generate hydrogen from water and sunlight.
This is a schematic illustration of a photoelectrochemical cell for water splitting. The absorption of photons on the photoanode (left) generates electron and hole carriers. The electrons will flow through the circuit to the photocathode and evolve hydrogen (right), while the holes will evolve oxygen (left). Figure courtesy of Peter Allen/The Institute for Molecular Engineering, University of Chicago
Hydrogen production offers a promising approach for producing scalable and sustainable carbon-free energy. The key to a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells (PECs), which are responsible for absorbing sunlight and driving water-splitting reactions.
LLNL's Lawrence Fellow Anh Pham, Assistant Professor Yuan Ping from the University of California at Santa Cruz (link is external) and Professor Giulia Galli from the University of Chicago (link is external) and Argonne National Laboratory (link is external) (formerly an LLNL scientist) reviewed the use of first-principles methods to understand the interfaces between photoabsorbers, electrolytes and catalysts in PECs.
The key to building an efficient PEC relies on the availability of abundant semiconducting photoelectrode materials that are responsible for absorbing sunlight and driving water-splitting reactions.
"Despite steady efforts and some breakthroughs, no single material has yet been found that simultaneously satisfies the efficiency and stability required for the commercialization of PEC hydrogen production technology," Pham said.
The team shows that with growing complexity of PEC architectures, understanding the properties of the interfaces between its components is key to predict novel, better performing materials and eventually to optimize the device performance.
In this study, the team discussed open challenges in describing PEC interfaces using first-principles techniques, focusing on the interplay between their structural and electronic properties. The scientists also reviewed first-principles techniques relevant for the study of solid-liquid interfaces, the structural and electronic properties of photoelectrode-water and photoelectrode-catalyst water interfaces and open theoretical challenges in the simulation of PEC interfaces.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/06/2025 | Nolan Johnson, I-Connect007Maybe you’ve noticed that I’ve been taking to social media lately to about my five must-reads of the week. It’s just another way we’re sharing our curated content with you. I pay special attention to what’s happening in our industry, and I can help you know what’s most important to read about each week. Follow me (and I-Connect007) on LinkedIn to see these and other updates.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.
Siemens Leverages AI to Close Industry’s IC Verification Productivity Gap in New Questa One Smart Verification Solution
05/13/2025 | SiemensSiemens Digital Industries Software announced the Questa™ One smart verification software portfolio, combining connectivity, a data driven approach and scalability with AI to push the boundaries of the Integrated Circuit (IC) verification process and make engineering teams more productive.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.