Carbon-Free Energy From Solar Water Splitting
January 24, 2017 | LLNLEstimated reading time: 1 minute

A Lawrence Livermore National Laboratory (LLNL) scientist and collaborators are fine tuning the mechanisms to generate hydrogen from water and sunlight.
This is a schematic illustration of a photoelectrochemical cell for water splitting. The absorption of photons on the photoanode (left) generates electron and hole carriers. The electrons will flow through the circuit to the photocathode and evolve hydrogen (right), while the holes will evolve oxygen (left). Figure courtesy of Peter Allen/The Institute for Molecular Engineering, University of Chicago
Hydrogen production offers a promising approach for producing scalable and sustainable carbon-free energy. The key to a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells (PECs), which are responsible for absorbing sunlight and driving water-splitting reactions.
LLNL's Lawrence Fellow Anh Pham, Assistant Professor Yuan Ping from the University of California at Santa Cruz (link is external) and Professor Giulia Galli from the University of Chicago (link is external) and Argonne National Laboratory (link is external) (formerly an LLNL scientist) reviewed the use of first-principles methods to understand the interfaces between photoabsorbers, electrolytes and catalysts in PECs.
The key to building an efficient PEC relies on the availability of abundant semiconducting photoelectrode materials that are responsible for absorbing sunlight and driving water-splitting reactions.
"Despite steady efforts and some breakthroughs, no single material has yet been found that simultaneously satisfies the efficiency and stability required for the commercialization of PEC hydrogen production technology," Pham said.
The team shows that with growing complexity of PEC architectures, understanding the properties of the interfaces between its components is key to predict novel, better performing materials and eventually to optimize the device performance.
In this study, the team discussed open challenges in describing PEC interfaces using first-principles techniques, focusing on the interplay between their structural and electronic properties. The scientists also reviewed first-principles techniques relevant for the study of solid-liquid interfaces, the structural and electronic properties of photoelectrode-water and photoelectrode-catalyst water interfaces and open theoretical challenges in the simulation of PEC interfaces.
Suggested Items
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.
Altair, JetZero Join Forces to Propel Aerospace Innovation
03/26/2025 | AltairAltair, a global leader in computational intelligence, and JetZero, a company dedicated to developing the world’s first commercial blended wing airplane, have joined forces to drive next-generation aerospace innovation.
RTX's Raytheon Receives Follow-on Contract from U.S. Army for Advanced Defense Analysis Solution
03/25/2025 | RTXRaytheon, an RTX business, has been awarded a follow-on contract from the U.S. Army Futures Command, Futures and Concepts Center to continue to utilize its Rapid Campaign Analysis and Demonstration Environment, or RCADE, modeling and simulation capability.
Ansys to Integrate NVIDIA Omniverse
03/20/2025 | ANSYSAnsys announced it will offer advanced data processing and visualization capabilities, powered by integrations with NVIDIA Omniverse within select products, starting with Fluent and AVxcelerate Sensors.
Altair Releases Altair HyperWorks 2025
02/19/2025 | AltairAltair, a global leader in computational intelligence, is thrilled to announce the release of Altair® HyperWorks® 2025, a best-in-class design and simulation platform for solving the world's most complex engineering challenges.