The World’s First Heat-Driven Transistor
January 31, 2017 | Linköping UniversityEstimated reading time: 2 minutes
Dan Zhao and Simone Fabiano at the Laboratory of Organic Electronics, Linköping University, have created a thermoelectric organic transistor. A temperature rise of a single degree is sufficient to cause a detectable current modulation in the transistor.
“We are the first in the world to present a logic circuit, in this case a transistor, that is controlled by a heat signal instead of an electrical signal,” states Professor Xavier Crispin of the Laboratory of Organic Electronics, Linköping University.
The heat-driven transistor opens the possibility of many new applications such as detecting small temperature differences, and using functional medical dressings in which the healing process can be monitored.
It is also possible to produce circuits controlled by the heat present in infrared light, for use in heat cameras and other applications. The high sensitivity to heat, 100 times greater than traditional thermoelectric materials, means that a single connector from the heat-sensitive electrolyte, which acts as sensor, to the transistor circuit is sufficient. One sensor can be combined with one transistor to create a “smart pixel”.
VärmetransistornA matrix of smart pixels can then be used, for example, instead of the sensors that are currently used to detect infrared radiation in heat cameras. With more developments, the new technology can potentially enable a new heat camera in your mobile phone at a low cost, since the materials required are neither expensive, rare nor hazardous.
The heat-driven transistor builds on research that led to a supercapacitor being produced a year ago, charged by the sun’s rays. In the capacitor, heat is converted to electricity, which can then be stored in the capacitor until it is needed.
The researchers at the Laboratory of Organic Electronics had searched among conducting polymers and produced a liquid electrolyte with a 100 times greater ability to convert a temperature gradient to electric voltage than the electrolytes previously used. The liquid electrolyte consists of ions and conducting polymer molecules. The positively charged ions are small and move rapidly, while the negatively charged polymer molecules are large and heavy. When one side is heated, the small ions move rapidly towards the cold side and a voltage difference arises.
“When we had shown that the capacitor worked, we started to look for other applications of the new electrolyte,” says Xavier Crispin.
Dan Zhao, principal research engineer, and Simone Fabiano, senior lecturer, have shown, after many hours in the laboratory, that it is fully possible to build electronic circuits that are controlled by a heat signal.
Since 2014 the research has been financed by the Knut and Alice Wallenberg Foundation as part of the “Tail of the sun” project.
The Laboratory of Organic Electronics
The Laboratory of Organic Electronics, Linköping University, is located on Campus Norrköping, and is the birthplace of the world’s first organic transistor and the world’s first chemical chip, together with several other organic electronic components. Professor Magnus Berggren is head of the laboratory.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Green Circuits Appoints Kaitlyn Muhlenforth as Marketing Manager
11/05/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is excited to announce the appointment of Kaitlyn Muhlenforth as its new Marketing Manager.
Photonics Systems Group Announces Exclusive After-Hours Tech Event at productronica 2025
11/05/2025 | Photonics Systems GroupPhotonics Systems Group (PSG), a leading expert in laser micromachining specifically for the electronics industry, announced its inaugural after-hours technical event, the Photonics Tech Evening, to be held on November 19, 2025, during Productronica 2025.
EMS and ODM Market Size to Surpass USD 1589.62 Billion by 2033, Rising at 7.40% CAGR
11/04/2025 | Globe NewswireAccording to the SNS Insider, “The EMS and ODM market size was valued at USD 900.09 Billion in 2025E and is projected to reach USD 1,589.62 Billion by 2033, growing at a CAGR of 7.40% during 2026–2033.”
New Podcast Episode: “Bonding Innovation: How Adhesives and Coatings Are Powering the Next Generation of Electronics”
11/05/2025 | I-Connect007I-Connect007 has released of a new episode in its Voices of the Industry podcast series, titled “Bonding Innovation: How Adhesives and Coatings Are Powering the Next Generation of Electronics.” Hosted by Nolan Johnson, this insightful discussion dives deep into the evolving world of adhesives and coatings—materials that are redefining performance, reliability, and design in modern electronics manufacturing. Dymax's Doug Katze, a leading expert in adhesive technologies, delivers what can only be described as a master class on how these critical materials are adapting to meet rapidly changing market demands.
Electronics Manufacturing Powers U.S. Growth, Supporting 5.2 Million Jobs and $1.8 Trillion in Output
11/03/2025 | Global Electronics AssociationNew report from Global Electronics Association shows electronics industry contributes $853 billion to GDP and delivers average annual wages exceeding $156,000, reinforcing its role as a pillar of U.S. economic resilience.