NIST, Partners ‘Cutting the Cord’ (and Wires) from Factory Communication Networks
January 31, 2017 | NISTEstimated reading time: 2 minutes
Providing wireless communications in a factory, plant or other industrial environment these days means more than just helping employees talk with each other while they work. By eliminating physical connections such as wires and cables from a facility’s communication network, wireless technology offers many manufacturing, chemical processing and municipal (such as water treatment) organizations a means to run their entire operation more efficiently, more productively and at less cost. However, a perceived lack of reliability, integrity and security has hampered the adoption and use of industrial wireless, especially when wireless communication can often be corrupted or disrupted in harsh industrial settings.
Rick Candell (seated) and Murat Aksu (standing) examine how wireless communications perform in a virtual chemical processing plant created by the NIST Industrial Wireless Test Bed. Data collected from a recent study of wireless propagation in three real factory settings will enhance the ability of the test bed to accurately simulate a variety of industrial environments.
Through its Wireless Systems for Industrial Environments project, the National Institute of Standards and Technology (NIST) is working with private-sector collaborators to overcome these obstacles and make industrial wireless communication a more viable choice. The latest milestone in this effort is a newly published study in which rigorous scientific experiments evaluated how well radio frequency (RF) signals propagated in three different factory environments: an automobile transmission assembly facility, a steam generation plant and a machine shop.
“Understanding how RF platforms work or don’t work in these harsh environments is the first step toward designing and deploying reliable wireless networks,” said NIST’s Rick Candell, the lead researcher on the study. “With the data from this research and future tests, we can define factors that can hinder RF propagation—including heat, vibration, reflection, interference and shielding—and then develop measures to address them.”
In their study of the three factory settings, Candell and his colleagues looked at three RF propagation characteristics. They made precise measurements of how the signals lost power over distance, dispersed over the factory floor and varied in strength due to absorption or reflection by the specific environment. “We clearly saw that wireless transmission of data in industrial facilities is completely different from signal propagation in a home or office setting,” Candell said. “It’s a harsh environment where reflective or absorbent surfaces, interference from competing RF signal traffic and other obstacles must be overcome if we want to deploy secure, integrated wireless platforms that perform dependably.”
The researchers performed mathematical and statistical analyses of the data from the three factory experiments and are incorporating them into a NIST test bed designed to replicate a manufacturing environment. This “factory in a box” re-creates the conditions found in a variety of industrial settings, allowing researchers to study the impacts on signal propagation in controlled laboratory conditions.
“The test bed supports the development of measurements and tests to evaluate signal performance, gives us the means to evaluate the usefulness of NIST computer models and simulations of wireless networks, and hopefully, will help us design and road test solutions to current propagation problems,” Candell said.
The NIST team also wants to hear from people involved with factories and plants about their specific industrial environments, including details about layout, structural makeup, operations and communications networking, as well as future needs and plans for wireless. “We hope that more managers will consider letting us conduct field trials of wireless in their facilities, especially ones with outdoor operations such as oil refineries or with possible signal-absorbing materials such as paper mills,” Candell said.
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.