Engineers Build Robot Drone That Mimics Bat Flight
February 2, 2017 | CaltechEstimated reading time: 2 minutes

Bats have long captured the imaginations of scientists and engineers with their unrivaled agility, but their complex wing motions pose significant technological challenges for those seeking to recreate their flight in a robot.
The key flight mechanisms of bats now have been recreated with unprecedented fidelity in the Bat Bot—a self-contained robotic bat with soft, articulated wings, developed by researchers at Caltech and the University of Illinois at Urbana-Champaign (UIUC).
"This robot design will help us build safer and more efficient flying robots, and also give us more insight into the way bats fly," says Soon-Jo Chung, associate professor of aerospace and Bren Scholar in the Division of Engineering and Applied Science at Caltech, and Jet Propulsion Laboratory research scientist. (Caltech manages JPL for NASA.)
Chung, who joined the Caltech faculty in August 2016, developed the robotic bat, along with his former postdoctoral associate Alireza Ramezani from UIUC and Seth Hutchinson, a professor of electrical and computer engineering at the UIUC and Ramezani's co-advisor. Chung is the corresponding author of a paper describing the bat that was published on February 1 in Science Robotics, the newest member of the Science family of journals published by the American Association for the Advancement of Science.
The Bat Bot weighs only 93 grams and is shaped like a bat with a roughly one-foot wingspan. It is capable of altering its wing shape by flexing, extending, and twisting at its shoulders, elbows, wrists, and legs. Arguably, bats have the most sophisticated powered flight mechanism among animals, which includes wings that have the capability of changing shape. Their flight mechanism involves several different types of joints that interlock the bones and muscles to one another, creating a musculoskeletal system that is capable of movement in more than 40 rotational directions.
"Our work demonstrates one of the most advanced designs to date of a self-contained flapping-winged aerial robot with bat morphology that is able to perform autonomous flight," Ramezani says.
One of the key challenges was to create wings that change shape while flapping, the way a biological bat's do. Conventional lightweight fabrics, like nylon and Mylar, are not stretchable enough. Instead, the researchers developed a custom ultra-thin (56 microns), silicone-based membrane that simulates stretchable, thin bat wings.
Bat-inspired aerial robots have the potential to be significantly more energy efficient than current flying robots because their flexible wings amplify the motion of the robot's actuators. When a bat—or the Bat Bot—flaps its wings, the wing membranes fill up with air and deform. At the end of the wings' downward flapping motion, the membranes snap back to their usual shape and blast out the air, creating a huge amplification in power for the flap.
The design has potential applications for environments where more traditional quadrotor drones—which have four spinning rotors—could collide into objects or people, causing damage or injury.
The study is titled "A Biomimetic Robotic Platform to Study Flight Specializations of Bats." This research was funded by the National Science Foundation's National Robotics Initiative.
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.