Better Biosensors on Edge
February 16, 2017 | KAUSTEstimated reading time: 2 minutes

Using a laser to burn patterns into a polymer sheet, KAUST researchers have created graphene electrodes that act as effective biosensors.
This chemical sensor contains graphene-based electrodes that were inscribed into the underlying polymer using a laser.
Graphene is a sheet of carbon, just one-atom thick, that is strong, flexible and highly conductive. Certain molecules can trigger an electrical response when they interact with graphene, making it potentially useful as an electrochemical sensor. One way to enhance its sensitivity is to create a large, accessible surface area of graphene by coating it inside three-dimension al porous materials. However, this usually requires expensive manufacturing techniques or involves chemical binders that interfere with sensing. Despite these steps, graphene sheets often aggregate, reducing their overall surface area.
Professor of Material Science and Engineering Husam Alshareef and colleagues at the University have developed an alternative approach using a technique called laser scribing. This technique locally heats parts of a flexible polyimide polymer to 2500 degrees Celsius or more to form carbonized patterns of patches on the surface that act as electrodes.
These black patches are about 33-micrometers thick, and their highly porous nature allows molecules to permeate the material. Inside the patches, the graphene sheets have exposed edges that are very effective at exchanging electrons with other molecules. “Graphene-based electrodes with more edge-plane sites are effectively better than those relying on carbon or carbon-oxygen sites in the plane of the material,” said the postdoc in Alshareef’s group Pranati Nayak, who led the study.
The researchers added platinum nanoparticle catalysts to one of the electrodes to speed up the electrochemical reactions with other molecules. In experiments with two different test molecules, this electrode could exchange electrons hundreds of times faster than other carbon-based electrodes and showed no loss in performance over 20 cycles of testing.
The team used this graphene-based electrode to build a sensor (see image) for three biologically important molecules: ascorbic acid, dopamine and uric acid. When the molecules hit the electrode surface, they release electrons, generating a current proportional to their concentration. Crucially, each molecule’s electrochemical response was seen at a different voltage, meaning the device could measure their concentrations simultaneously and without interference.
The electrode accurately detected very small (micromolar) concentrations of the molecules, beating several rival electrodes on both sensitivity and the lower limits of detection. The researchers now hope to add traces of other atoms, such as nitrogen, to graphene to improve its sensing performance and to augment the electrodes with aptamers, short strands of DNA, RNA or peptides that bind to specific target molecules, to create new biosensors.
Suggested Items
EIPC Summer Conference 2025: PCB Innovation in Edinburgh
04/18/2025 | EIPCEIPC have very wisely selected this wonderful city in Scotland as the venue for their Summer Conference on June 3-4. Whilst delegates will be distilling the proven information imparted by the speakers in the day, in the evening they will be free spirits at the Conference Dinner.
Transforming the Future of Mobility: DuPont Unveils Silver Nanowire Products in South Korea
04/17/2025 | DuPontDuPont will showcase its state-of-the-art products that incorporate silver nanowire technologies in Hall D, Booth A31 at Electronics Manufacturing Korea (EMK) and Automotive World Korea (AWK) exhibitions from April 16 to 18.
Best Papers from SMTA International Announced
04/10/2025 | SMTAThe SMTA is pleased to announce the Best Papers from SMTA International 2024. The winners were selected by members of the conference technical committee. Awards are given for "Best of Proceedings" as well as "Best Practical and Applications-Based Knowledge" categories. A plaque is given to primary authors of all winning papers for these exceptional achievements.
Thales & Saildrone Integrate Blue Sentry Array with Uncrewed Systems
04/07/2025 | ThalesThales Australia and Saildrone announce successful integration of the Thales Blue Sentry array and Saildrone’s uncrewed systems. A potent new national security capability, now proven at sea
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.