Giving Power to Demand-Driven Electricity
February 16, 2017 | KAUSTEstimated reading time: 2 minutes

Power generators face the constant challenge of matching the amount of power produced at any given time with the demand from consumers. Excess generation is wasteful and expensive, while undergeneration can cause brownouts. For this reason, accurately predicting power demand hours or even days in advance is critical for the reliable and sustainable operation of the electricity grid.
KAUST Distinguished Professor of Applied Mathematics and Computational Science Marc Genton and his colleagues have developed an effective way to use the enormous amount of power-usage data reported by household energy meters to more accurately forecast power demand.
In many countries, households and businesses are fitted with “smart” power meters that report power consumption in short intervals to the electricity network. For consumers, smart meters make it possible to monitor electricity usage in real time, and often the data they collect can help to identify usage habits and issues. For generators, smart-meter data represent a potential gold mine of information with which to better predict demand and operate power-generation facilities more efficiently. However, the sheer volume and complexity of data collected by household smart meters on a city or regional scale makes using the data challenging.
“Smart-meter data can help generators understand individual electricity consumption behavior,” explained Genton; “however, the heterogeneity, high level of noise and volume of data require the development of new forecasting algorithms. Our flexible machine-learning algorithm is designed to handle the specific properties of smart-meter data.”
One of the main difficulties in effectively analyzing household power-consumption data is the noise caused by rapid changes in energy usage as appliances are switched on and off. In addition, the enormous variety in usage patterns among households and the volume of data that need to be analyzed presents tremendous obstacles for traditional analytical approaches.
Genton and his former postdoc Souhaib Ben Taieb and KAUST Assistant Professor of Applied Mathematics and Computational Science Raphaël Huser collaborated with Professor Rob J. Hyndman from Monash University in Australia to develop a machine-learning algorithm that computes one-day-ahead probabilistic forecasts for each meter using recent time-series data and many predictor variables, including date and weather parameters. In their demonstration study, the team used the distributed computing environment at KAUST to analyze half-hourly smart-meter data recorded by more than 3,000 households over 1.5 years.
“Our algorithm has many advantages, including flexibility, automatic variable selection and interpretability,” said Genton, “and we showed that it can provide more accurate probabilistic forecasts compared to existing state-of-the art forecasting methods.”
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.