Research Opens Door to Smaller, Cheaper, More Agile Communications Tech
February 17, 2017 | Australian National UniversityEstimated reading time: 1 minute

Research led by ANU on the use of magnets to steer light has opened the door to new communications systems which could be smaller, cheaper and more agile than fibre optics.
Group leader Professor Wieslaw Krolikowski from the ANU Research School of Physics and Engineering (RSPE) said the team's breakthrough would be crucial for developing tiny components to process huge amounts of data.
"This technology is also expected to be applicable in sensors, data storage and liquid crystal displays," said Professor Krolikowski.
Today's communication technologies aim to maximise data transmission rates and require the ability to precisely direct information channels. These technologies use electronic components for signal processing such as switching, which is not as fast as light-based technology including fibre optics.
Professor Krolikowski said the team used a magnetic field to stimulate liquid crystals and steer light beams carrying data, which enables an innovative approach to data processing and switching.
"Our discovery could lead to communications technology that could power a new generation of efficient devices such as compact and fast optical switches, routers and modulators," he said.
Co-researcher Dr Vladlen Shvedov from RSPE said the team's innovation, based on liquid crystals with properties modified by light, promised a much more agile system than fibre optics.
"This touch-free magneto-optical system is so flexible that you can remotely transfer the tiny optical signal in any desired direction in real time," Dr Shvedov said.
Co-researcher Dr Yana Izdebskaya from RSPE said while the innovation was in the early stages, it was highly promising for future communications technology.
"In the liquid crystal the light creates a temporary channel to guide itself along, called a soliton, which is about one tenth the diameter of a human hair. That's about 25 times thinner than fibre optics," Dr Izdebskaya said.
"Developing efficient strategies to achieve the robust control and steering of solitons is one of the major challenges in light-based technologies."
Dr Izdebskaya said controlling solitons in liquid crystals had only been achieved by applying voltage from inflexible electrodes.
"Such systems have been restricted by the configuration of electrodes in a thin liquid crystal layer. Our new approach doesn't have this limitation and opens a way to full 3D manipulations of light signals carried by solitons," Dr Izdebskaya said.
Suggested Items
North American PCB Industry Shipments Down 3.1% in March
04/28/2025 | IPCIPC announced the March 2025 findings from its North American Printed Circuit Board (PCB) Statistical Program. The book-to-bill ratio stands at 1.24.
Global Semiconductor Sales Increase 17.1% Year-to-Year in February
04/07/2025 | SEMIThe Semiconductor Industry Association (SIA) announced global semiconductor sales were $54.9 billion during the month of February 2025, an increase of 17.1% compared to the February 2024 total of $46.9 billion and 2.9% less than the January 2025 total of $56.5 billion.
TT Electronics Celebrates 35 Years of Dedication with Rhys Moseley
04/04/2025 | TT ElectronicsAt TT Electronics, the commitment to people as the cornerstone of success is showcased through the remarkable achievements of its employees.
KYZEN Focuses on Concentration Monitoring and Stencil Cleaning at SMTA Arizona
04/02/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, will exhibit at the SMTA Arizona Expo and Tech Forum scheduled to take place Wednesday, April 16 at the DoubleTree by Hilton in Mesa, AZ.
Airbus to Design and Build ESA’s ExoMars Rover Lander Platform
03/31/2025 | AirbusAirbus has been selected by the European Space Agency (ESA) and Thales Alenia Space (TAS - a joint venture between Thales (67%) and Leonardo (33%)), the ExoMars industrial prime contractor, to build key systems for the ExoMars lander that will safely place the Rosalind Franklin rover on the surface of the Red Planet.