New Material for the Electron Injection Layer and Transport Layer of Organic EL Displays
February 17, 2017 | Tokyo Institute of TechnologyEstimated reading time: 1 minute

As part of the Strategic Basic Research Programs of Japan Science and Technology Agency (JST), research group led by Professor Hideo Hosono at Institute of Innovative Research, Tokyo Institute of Technology has developed two new oxide semiconductors which are suitable for organic electronics.
Organic semiconductors have a small electron affinity1. This creates a high barrier for electron injection from the cathode to the active layer and this is a bottleneck for organic EL displays. Furthermore, there are no transparent materials with high mobility in the electron transport layer which carries electrons from the cathode to the active layer. This makes it impossible to increase the thickness of the layer, and lead to the problem of organic semiconductors being prone to short circuits.
The research group led by Hosono focused on how the IGZO thin-film transistor (IGZO-TFT) is now being applied to organic EL displays, and succeeded in using a transparent amorphous oxide to develop a new material for use in the electron injection layer and electron transport layer. This development increases the stability when applying IGZO-TFT to organic EL displays, and also decreases the cost of the manufacturing process. The injection layer possesses a low-work function2 which is equivalent to lithium metal, while the transport layer possesses high mobility that exceeds conventional organic materials by more than 3 digits. It has been demonstrated that using this new material makes it possible to realize organic EL devices that possess performance equivalent to or greater than stacked structures even when using reverse-stacked structures (structures in which the cathode is at the bottom).
The newly-developed transparent oxide semiconductors are all transparent and chemically stable. At ambient temperatures, the semiconductors can be formed on a large-area substrate with the same ease as the transparent electrode ITO (indium tin oxide). Furthermore, the formed thin film is amorphous and the surface therefore possesses superior smoothness. Simultaneous wet etching processing is possible for the thin films which have been formed on the ITO electrode. This makes it possible to construct a process which is optimal for mass production.
This research was conducted as part of ACCEL program at JST Research was conducted in cooperation with Dr. Junghwan Kim of Tokyo Tech and a group led by Dr. Satoru Watanabe from the New Product R&D Center at the Technology General Division of Asahi Glass Co., Ltd.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Indium President and CEO to Deliver ELCINA CEO Forum Keynote at Productronica India
09/17/2025 | Indium CorporationIndium Corporation President and CEO Ross Berntson will deliver the Electronic Industries Association of India (ELCINA) CEO Forum keynote at Productronica India, to be held September 17-19 in Bengaluru, India.
Indium to Highlight Energy-Efficient, High-Reliability Solder Solutions for EV and Electronics at Productronica India
09/03/2025 | Indium CorporationIndium Corporation, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, electric vehicle (EV), thin-film, and thermal management markets, will feature a range of sustainable, high-reliability solder products at Productronica India, to be held September 17-19 in Bengaluru, India.
Indium Promotes Huang to Senior Manager, Marketing Communications
08/28/2025 | Indium CorporationWith its commitment to innovation and growth through employee development, Indium Corporation announces the promotion of Jingya Huang to Senior Manager, Marketing Communications, to continue to lead the company’s branding and promotional efforts.
Indium Expert to Present on AI Thermal Challenges at INEMI Forum on Complex Integrated Electronics
08/26/2025 | Indium CorporationIndium Corporation Assistant Product Manager Foo Siang Hooi will deliver a technical presentation on addressing thermal challenges in AI and high-performance computing (HPC) with metal-based thermal interface materials (TIMs) at the International Electronics Manufacturing Initiative (INEMI) Forum on Complex Integrated Electronics, to be held September 17-18 in Penang, Malaysia.
Indium Corporation to Showcase Innovative Materials Enabling AI Technology at SEMICON Taiwan
08/20/2025 | Indium CorporationIndium Corporation®, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, AI, thin-film, and thermal management markets, will showcase its heterogeneous integration and assembly (HIA) products and thermal interface materials (TIMs) at SEMICON Taiwan, to be held September 10-12 in Taipei, Taiwan.