Advanced Silicon Solar Cells
February 20, 2017 | MITEstimated reading time: 9 minutes
The bottom line, observes Buonassisi, is that the very feature that makes the PERC technology efficient — the special architecture designed to capture solar energy efficiently — is what reveals a problem inherent in the fabricated material. “The cell people did everything right,” he says. “It’s the quintessential law of unintended consequences.” And if the problem is the higher density of excited electrons interacting with defects in the silicon wafer, then developing effective strategies for dealing with it will only get more important because next-generation device designs and decreasing wafer thicknesses will bring even higher electron densities.
To Buonassisi, this work demonstrates the importance of talking across boundaries. He advocates communication among all participants in the solar community — both private companies and research organizations — as well as collaboration among experts in every area — from feedstock materials to wafers, cells, and modules to system integration and module installation. “Our laboratory is taking active steps to bring together a community of stakeholders and create a vertically integrated R&D platform that I hope will enable us to more quickly address the technical challenges and help lead to 10 TW of PV by 2030,” he says.
This research was funded by the National Science Foundation, the U.S. Department of Energy, and the National Research Foundation Singapore through the Singapore-MIT Alliance for Research and Technology.
Page 2 of 2Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
Hikrobot Integrates Wiferion Technology Into AMRs
04/30/2025 | HikrobotIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
Hikrobot Integrates Wiferion Technology into AMRs
04/29/2025 | WiferionIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
CCL Design, Ynvisible Announce Strategic Partnership to Deliver Scalable Printed Display Solutions
04/28/2025 | CCL DesignCCL Design will integrate Ynvisible's proprietary display technology into its global manufacturing infrastructure and technology portfolio.
Candor Elevates PCB Fabrication Services with Continued Facility Upgrades
04/28/2025 | Candor CircuitsOntario-based circuit board manufacturer, Candor Circuit Boards has recently completed a series of facility upgrades to improve their PCB offerings. These investments will allow Candor to provide higher volumes of complicated boards more efficiently with better yield. The new technology has allowed the company to take on exciting high technology projects and collaborations in industries such as Military and Aerospace, Medical, Energy and more.