Blind Matchmaking for More Efficient Wireless Networks
February 27, 2017 | KAUSTEstimated reading time: 1 minute
Wireless networks are groaning under the strain of an ever-increasing number of mobile devices and data-hungry applications, such as video streaming. This means network engineers are searching for alternative methods to utilize the available wireless bandwidth. Although wireless technology is improving all the time, a major source of inefficiency persists in the way that telecommunication companies divide up the wireless spectrum—the range of radio frequencies available for wireless communications.
Dr. Doha Hamza and Jeff Shamma, Professor of Electrical Engineering, have developed a way for strangers to pair up to make better use of the available bandwidth.
"Cognitive radio technology, as we call it, is a promising approach to solve the wireless spectrum scarcity problem,” explained Shamma. “This technology allows secondary unlicensed users to access the primary licensed users' frequency bands. To make this possible, the primary and secondary users need to be paired in a way that ensures mutual benefit while maintaining quality-of-service constraints.”
Hamza and Shamma turned to a field of mathematics called matching theory to deal with the cognitive radio-pairing problem. Matching theory is a mathematical framework for forming pairs from two groups that is already used routinely for several applications, such as organ-exchange programs, college admissions and communications networks.
“Primary users and secondary users need to be matched so that the partnership is mutually beneficial,” says Shamma. “Different partnerships can provide different benefits, and primary and secondary users can have preferences over possible partnerships; however, unlike conventional applications for matching theory, there is no central authority to regulate the market, meaning that primary and secondary users have limited information about the preferences of other actors.”
To address the lack of centralization, the researchers developed a “blind” matching algorithm involving a relatively simple learning process. The agents meet one-on-one and make proposals based on a short list of preferences. The proposals may be accepted or rejected, resulting in the forming and breaking of partnerships. Likewise, agent aspirations regarding the potential benefit of finding a partner may also rise and fall.
The algorithm is broadly applicable to general-matching settings, but is particularly useful for implementing the cognitive-radio concept. Shamma explained that “despite the blind encounters and limited information, we showed that this simple dynamic converges to a stable-matching state in which no pair of agents has an incentive to break their current matches in favor of others.”
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Blaize, Technology Control Company Partner to Power Saudi Arabia’s Next-Generation AI Innovation Infrastructure
09/17/2025 | BUSINESS WIREBlaize Holdings, Inc., a leader in programmable, energy-efficient edge AI computing, and Technology Control Company (TCC), a leading technology solutions provider in the Kingdom of Saudi Arabia (KSA), announced a strategic partnership to advance Saudi Arabia’s AI innovation infrastructure and accelerate its digital transformation goals.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
On the Line With… Podcast: UHDI and RF Performance
09/17/2025 | I-Connect007I-Connect007 is excited to announce the release of a new episode in its latest On the Line with... podcast series, which shines a spotlight on one of the most important emerging innovations in electronics manufacturing: Ultra-High-Density Interconnect (UHDI).
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.