Blind Matchmaking for More Efficient Wireless Networks
February 27, 2017 | KAUSTEstimated reading time: 1 minute
Wireless networks are groaning under the strain of an ever-increasing number of mobile devices and data-hungry applications, such as video streaming. This means network engineers are searching for alternative methods to utilize the available wireless bandwidth. Although wireless technology is improving all the time, a major source of inefficiency persists in the way that telecommunication companies divide up the wireless spectrum—the range of radio frequencies available for wireless communications.
Dr. Doha Hamza and Jeff Shamma, Professor of Electrical Engineering, have developed a way for strangers to pair up to make better use of the available bandwidth.
"Cognitive radio technology, as we call it, is a promising approach to solve the wireless spectrum scarcity problem,” explained Shamma. “This technology allows secondary unlicensed users to access the primary licensed users' frequency bands. To make this possible, the primary and secondary users need to be paired in a way that ensures mutual benefit while maintaining quality-of-service constraints.”
Hamza and Shamma turned to a field of mathematics called matching theory to deal with the cognitive radio-pairing problem. Matching theory is a mathematical framework for forming pairs from two groups that is already used routinely for several applications, such as organ-exchange programs, college admissions and communications networks.
“Primary users and secondary users need to be matched so that the partnership is mutually beneficial,” says Shamma. “Different partnerships can provide different benefits, and primary and secondary users can have preferences over possible partnerships; however, unlike conventional applications for matching theory, there is no central authority to regulate the market, meaning that primary and secondary users have limited information about the preferences of other actors.”
To address the lack of centralization, the researchers developed a “blind” matching algorithm involving a relatively simple learning process. The agents meet one-on-one and make proposals based on a short list of preferences. The proposals may be accepted or rejected, resulting in the forming and breaking of partnerships. Likewise, agent aspirations regarding the potential benefit of finding a partner may also rise and fall.
The algorithm is broadly applicable to general-matching settings, but is particularly useful for implementing the cognitive-radio concept. Shamma explained that “despite the blind encounters and limited information, we showed that this simple dynamic converges to a stable-matching state in which no pair of agents has an incentive to break their current matches in favor of others.”
Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Elephantech, Logitech Together Drive Disruptive Electronics Innovation
05/01/2025 | ElephantechElephantech Inc. announced a groundbreaking collaboration with Logitech International to revolutionize peripherals manufacturing and the printed circuit board (PCB) industry.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.