Metallic Atomically-Thin Layered Silicon
March 7, 2017 | London Centre for NanotechnologyEstimated reading time: 2 minutes

A new metallic silicon (Si) nanostructure has been discovered by researchers from the London Centre for Nanotechnology, the Japan Advanced Institute of Science and Technology (JAIST), and the Brookhaven National Laboratory (BNL), USA. Their study, which appears in the journal 2D Materials ("Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2"), shows that a new atomically-thin Si nanostructure with metallic properties can be grown upon the two-dimensional (2D) material silicene on zirconium diboride (ZrB2).
Scanning tunnelling microscopy (STM) topographic image of the silicene surface on ZrB2 with (right) and without (right) an additional layer of silicon deposited on top. A schematic illustration of this is shown above. With the added layer, the silicon nanostructure becomes metallic and forms an atomically sharp boundary with the neighbouring silicene.
The new Si nanostructure is found to form an atomically-sharp edge with the 2D silicene sheet and could enable the development of native electrical contacting, an important step to realising functional devices based upon silicene and other 2D materials.
As the size of conventional semiconductor devices approaches the fundamental limit at the atomic scale, quantum mechanical effects begin to dominate their behaviour. Researchers across the globe are working to find new ways to harness these quantum phenomena, particularly in new materials in which their effects are more pronounced. One avenue of promise is research into materials that are only a few atomic layers thick. The first of these so called “atomically-thin 2D materials” to be realised in a laboratory was graphene, which is a single layer of carbon atoms. Since the discovery of graphene, a wide range of other 2D materials have been found that have a broad array of potentially novel properties.
“One very exciting new material is silicene, the silicon analogue to graphene” says Yukiko Yamada-Takamura, the member of the research team whose group first discovered the formation of silicene on ZrB2. “Silicene is an interesting development in the field because it may give us access to the electronic properties previously unique to graphene, but in the material of choice in the information technology industry, silicon.”
Recent work has shown that silicene can be incorporated into a conventional field effect transistor and other 2D materials. However, a challenge that remains is how to precisely electrically contact external wires to the silicene sheet without destroying the electronic properties that we desire.
In this work, the researchers found that growing additional silicon layers on top of the silicene surface led to the development of an unusual form of silicon that is unlike a normal silicon crystal. Using angle resolved photoelectron spectroscopy, a technique that probes how electrons are bound in a material, the team showed that the new Si nanostructure is metallic. Scanning tunnelling microscopy, an instrument capable of observing individual atoms on a surface, was then used to show that the transition to this metallic state occurs at atomically sharp boundaries, without affecting the properties of the neighbouring silicene sheet.
“This work highlights the unexpected and intriguing results that can manifest when the structure of 2D materials are altered, even by the addition of one more layer of atoms” said Dr Tobias G. Gill, the first author of this work. “We hope that this new metallic form of silicon can be used to develop the ability to produce native electrical contacts to silicene in future devices.”
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.