Uncompromising on Organic Solar Cells
March 7, 2017 | ACN NewswireEstimated reading time: 2 minutes

Researchers developed a semi-transparent organic solar cell that achieves better efficiency and transparency than existing ones, according to a recent study in the Science and Technology of Advanced Materials (STAM).
(Figure:) (a) Optical microscopy image of the commercial substrate that consists of a random mesh-like silver network on PET. Optical confocal microscopy images of the laminate electrode when coating with a ~450 nm thick (b) and ~1.3 um thick (c) PEDOT:PSS:sorbitol film. For small film thicknesses (b), the metal network is not fully covered. (d) Photograph of the semitransparent, laminated cell. (c)2016 Mohammed Makha, Paolo Testa, Surendra Babu Anantharaman, Jakob Heier, Sandra Jenatsch, Nicolas Leclaire, Jean-Nicolas Tisserant, Anna C. Veron, Lei Wang, Frank Nuesch and Roland Hany.
Semi-transparent organic solar cells (OSCs) have potential for providing low-cost, large-area energy conversion devices for various applications such as windows, roof covers and greenhouses. However, it is challenging to achieve semi-transparent OSCs with high power conversion efficiency (PCE) and high transparency at the same time. Usually, the active materials of OSCs consist of a binary blend of a visibly absorbing donor polymer and a fullerene acceptor. The average visible transmittance (AVT) of the cell can be increased by decreasing the binary film thickness; however, this goes at the expense of the PCE because less sunlight is absorbed by a thinner layer.
In a STAM study, a team led by Mohammed Makha from the Swiss Federal Institute for Materials Science and Technology bypassed this tradeoff between transparency and efficiency of OSCs by using a ternary mixture. In addition, they used a flexible and transparent top electrode that was applied via a lamination step. As an advantage, the lamination process is simple and compatible with roll-to-roll systems for OSC production from solution.
The team added to a visibly absorbing binary polymer-fullerene blend a dye as a third minority component. The dye absorbs light exclusively in the near-infrared (NIR) wavelength region and therefore does not reduce the visible transparency of the OSC. Due to the additional current generated via NIR absorption, the polymer content could be reduced without compromising the cell performance. Semitransparent OSCs with a uniform AVT or 51% and a PCE of 3% were demonstrated.
The researchers say that the concept of ternary OSCs with multiple acceptor or donor materials has been recognized before as a strategy to overcome specific limitations of binary blends. However, not many successful ternary systems have been found so far, because the developing film morphology is difficult to control. The team believes that their ternary blend performs so well because of a specific intermixed phase between the NIR dye and the fullerene; therefore, the system could successfully work with other polymers.
Suggested Items
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
Real Time with... IPC APEX EXPO 2025: Benmayor Group—Resistance is Futile: Automation Is the Future
04/11/2025 | Real Time with...IPC APEX EXPOJeff Brandman, president of Aismalibar North America, and Eduardo Benmayor, CEO of Benmayor Group, discuss Benmayor Group's role in electronics and automation, focusing on how automation addresses labor shortages. Jeff, notes that many businesses struggle to find workers for manual tasks, emphasizing the need for various automation solutions to boost productivity. North America lags in automation compared to other regions, which impacts efficiency. Jeff recommends a step-by-step approach to scaling automation, and there's growing acceptance of robots in the workforce, leading to a positive outlook for the future.
Real Time with... IPC APEX EXPO 2025: Exploring Ventec's Innovations
04/09/2025 | Real Time with...IPC APEX EXPOMark Goodwin highlights Ventec's global distribution network and recent expansions in service and equipment offerings. He emphasizes the company's expertise in coating technology for thermal management, specialized materials, and its agility in creating customized solutions for customers.
INEMI Sessions at IPC APEX EXPO Focus is on Board Assembly and PCB & Laminates
03/12/2025 | iNEMIIf you plan to attend the upcoming IPC APEX EXPO in Anaheim, California, be sure to add the INEMI sessions to your calendar. We will have two forward-looking sessions — one on PCB and Laminates and the other on Board Assembly.
Rogers Corporation Launches New Thermoset Laminates for Automotive Radar Sensor Applications
03/03/2025 | Rogers CorporationRogers Corporation (NYSE:ROG) announced its latest innovation in dielectric materials: RO4830™ Plus Circuit Materials, which are well suited for cost-sensitive millimeter wave PCB applications, such as 76-81 GHz automotive corner radar sensors.