Making Use of Flat Surfaces for Catalysis
April 4, 2017 | KAUSTEstimated reading time: 2 minutes

A novel way of increasing the chemical reactivity of a two-dimensional material has been used to produce a cheap and effective catalyst that can extract hydrogen from water—an important step in the quest for clean energy supplies. This technique developed by KAUST researchers may also have potential benefits for other manufacturing industries1.
Treating molybdenum disulfide in a hydrogen plasma creates active sites on its planar surface and makes the surface reactive for reducing water to hydrogen.
Hydrogen stores an enormous amount of energy that can be released by electrochemically combining hydrogen and oxygen in a fuel cell. Despite being the lightest element in the periodic table, gaseous hydrogen doesn’t occur naturally on Earth, so the race is on to find an efficient process to produce it.
One route to hydrogen generation is by electrolysis: passing an electrical current through water via two electrodes to cause a chemical reaction that breaks the water molecule into its component hydrogen and oxygen atoms. The speed of this so-called hydrogen evolution reaction can be increased using a catalyst on the electrodes.
Platinum is a perfect material for the job, but is it very expensive.
Lain-Jong Li, Professor of Material Science and Engineering at KAUST, with colleagues from the National Chiao Tung University and the National Applied Research Laboratories in Taiwan have demonstrated a method for increasing the catalytic activity of molybdenum disulfide, a much cheaper alternative.
Molybdenum disulfide is a two-dimensional material very similar to graphene. Previous experimental and theoretical results have verified its excellent catalytic potential and indicated that the hydrogen evolution reaction takes place at its jagged edges, while its flat surface planes remain chemically inert.
“A monolayer of molybdenum disulfide is only reactive for reducing water to hydrogen at its edge,” explained Li. “But we discovered an efficient way to create active sites on its planar surface, largely activating surface reactivity.”
Li and team created their molybdenum disulfide using a process called chemical vapor deposition. A sample was then transferred to a graphite substrate and placed in a vacuum chamber in which the researchers created a hydrogen plasma. This process removed some of the sulfur atoms from the surface of the sample. By adjusting the sample’s time in the plasma, the team could control the density of these sulfur vacancies.
The researchers confirmed the changes in catalytic activity and also found a useful offshoot of this process. Controlling the atomic composition of molybdenum disulfide could also lead to the development of electrical, optical and magnetic devices.
“Next we hope to move beyond the beaker and put the catalysts in practical flow cell tests,” said Li.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Alternative Manufacturing, Inc. (AMI) Announces Commitment to Excellence in Industrial, Defense, Aerospace, Renewables, and Robotics Markets
09/16/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing, Inc. (AMI), a 100% employee-owned contract manufacturer, proudly reaffirms its leadership in the electronics manufacturing services (EMS) industry with a continued commitment to delivering high-quality PCBAs and box builds across the industrial, defense, aerospace, renewable energy, and robotics markets.
Sustainability and Selective Soldering
09/15/2025 | Dr. Samuel J. McMaster, Pillarhouse InternationalSustainability is more than just a buzzword for the electronics industry; it’s a key goal for all manufacturing processes. This is more than a box-ticking exercise or simply doing a small part for environmentally friendly processes. Moving toward sustainable solutions drives innovation and operational efficiency.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.