NUS Engineers Develop Novel Lens for Super-Resolution Imaging
April 10, 2017 | NUSEstimated reading time: 2 minutes
Discovery breaks resolution limitations in microscopy; Potential applications in high precision failure inspection and biological research.
The optical microscope is a critical equipment for scientific research and failure inspection in high precision industries. However, for centuries, the imaging resolution of microscopes is fundamentally limited by the diffraction limit of light. Existing efforts to break this fundamental diffraction limit through various technologies suffer from limitations such as a near-field operation, which requires the sample to be close to the microscope, or the dyeing of samples, which is an invasive process that affects the quality of the sample.
A research team led by Professor Hong Minghui and Associate Professor Qiu Cheng Wei from the Department of Electrical and Computer Engineering at NUS Faculty of Engineering has developed a novel supercritical lens, which enable optical microscopes to capture images in real-time and with greater detail beyond diffraction limit. In addition, this technique does not require any pre-treatment of samples or post-processing of the image.
Prof Hong said, “Our breakthrough is achieved in a totally non-invasive manner, coupled with the capability of real-time imaging. This could potentially open up a wide range of applications in areas such as high precision failure inspection in the semiconductor industry, and will also contribute significantly to biological research.”
High-performance, ultra-thin lens that is easy to fabricate at low cost
Planar metalens is a high-performance, ultra-thin lens which has extraordinary capabilities in light modulation, as compared to traditional three-dimensional bulky optical lens. The NUS team’s supercritical lens, which is based on the concept of an optimised planar metalens, is developed using a new algorithm and it can be easily fabricated by a commercial laser pattern generator in high speed and at low cost.
Specifically, the team demonstrated an imaging resolution of 65 nanometres using the supercritical lens microscope, as compared to typical microscopes which have an imaging resolution of around 120 to 150 nanometres. In addition, this novel microscopy technique exhibits a significantly longer working distance of 55 micrometres, thus providing additional space for easier handling and adjustment of samples in real-world applications, and allowing the samples to be observed in greater detail.
Assoc Prof Qiu added, “Using a lens with microscale feature size, we have achieved nanoscale imaging resolution. Our invention could potentially bridge the wide gap between laboratory proof-of-concept demonstrations and practical applications for the super-resolution imaging technique.”
Wide-ranging applications
This discovery by NUS researchers holds great promise for nano-imaging of semiconductor devices, and could enable faster, cost-effective and more accurate detection of defects in components such as integrated circuit chips which require imaging resolution that is less than 100 nanometres (sub-diffraction resolution). Current methods of defect detection require the use of the scanning electron microscope, which is a specialised and expensive equipment, and the process also needs to be operated in a vacuum environment.
In the area of biological research, most protein and cellular tissues require sub-diffraction limit imaging, thus resulting in the need for the dyeing of samples. The team’s invention could potentially lead to non-invasive investigation of the interior of biological cells, thus allowing researchers to study samples at a much deeper level than ever before. And this may eventually contribute towards new medical discoveries.
Moving forward, the NUS team plans to further enhance the imaging resolution of the novel lens and explore new applications for the technique. They have also filed a patent for the technology and is exploring opportunities to work with industry partners to commercialise their invention.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
MEMS & Imaging Sensors Summit to Spotlight Sensing Revolution for Europe’s Leadership
09/11/2025 | SEMIIndustry experts will gather November 19-20 at the SEMI MEMS & Imaging Sensors Summit 2025 to explore the latest breakthroughs in AI-driven MEMS and imaging optimization, AR/VR technologies, and advanced sensor solutions for critical defence applications.
Direct Imaging System Market Size to Hit $4.30B by 2032, Driven by Increasing Demand for High-Precision PCB Manufacturing
09/11/2025 | Globe NewswireAccording to the SNS Insider, “The Direct Imaging System Market size was valued at $2.21 Billion in 2024 and is projected to reach $4.30 Billion by 2032, growing at a CAGR of 8.68% during 2025-2032.”
I-Connect007’s Editor’s Choice: Five Must-Reads for the Week
07/04/2025 | Marcy LaRont, I-Connect007For our industry, we have seen several bullish market announcements over the past few weeks, including one this week by IDC on the massive growth in the global server market. We’re also closely watching global trade and nearshoring. One good example of successful nearshoring is Rehm Thermal Systems, which celebrates its 10th anniversary in Mexico and the official opening of its new building in Guadalajara.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.