Researchers Print Promising Two-Dimensional Transistors
April 10, 2017 | TU DelftEstimated reading time: 2 minutes

Researchers from AMBER and Trinity College in Dublin, in collaboration with TU Delft, have fabricated printed transistors consisting entirely of two-dimensional nanomaterials for the first time. These 2D materials combine promising electronic properties with the potential for low-cost production. This research could unlock the potential for applications such as food packaging that displays a digital countdown to warn you of spoiling, wine labels that alert you when your white wine is at its optimum temperature, next-generation banknote security and even flexible solar cells.
The Trinity College researchers, from the groups of profs. Jonathan Coleman and Georg Duesberg, used standard printing techniques to combine graphene nanosheets as the electrodes with two other nanomaterials, tungsten diselenide and boron nitride, as the channel and separator (two important parts of a transistor) to form an all-printed, all-nanosheet, working transistor. “This publication is important because it shows that conducting, semiconducting and insulating 2D nanomaterials can be combined together in a complex device”, Coleman said. “We felt that it was critically important to focus on printing transistors as they are the electric switches at the heart of modern computing.”
Prof Coleman is a partner in Graphene flagship, a €1 billion EU initiative to boost new technologies and innovation during the next 10 years.
Testing without touching
Two-dimensional transistors have been made before with methods such as chemical vapour deposition. While devices created in this manner perform well, the costs of these methods are high. Printable electronics, on the other hand, have until now been mostly based on carbon-based molecules. These molecules can cheaply and easily be turned into printable inks, but such materials are somewhat unstable and have well-known performance limitations.
Collaborating with Toyota’s Dr. Sachin Kinge, Dr. Jannika Lauth from the Laurens Siebbeles group at TU Delft tested the electrical transport characteristics of the transistors, proving they combine the best of both worlds.. “By using terahertz spectroscopy, we were able to determine the conductivity of the semiconductor materials”, said Lauth. “Terahertz radiation is a special form of light with an energy between that of microwaves and infrared cameras. It allowed us to analyse the samples without touching them.”
Towards a single nanosheet
The material that makes up the team’s printed electronics consist of many different nanosheets (or ‘flakes’) of varying sizes. During the printing process, these flakes are randomly deposited on top of each another like Mikado sticks. Lauth found that, while the conductivity between the flakes leaves something to be desired, the conductivity within nanosheets is good.
A promising next step is to print 2D-structures that are made up of a single nanosheet, which will drastically improve the performance of the printed electronics. This may be achieved by building up the nanosheets from scratch using molecular or nanoparticle precursors, a method that also yields inks and that Lauth is pursuing at TU Delft.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.