Crucial Considerations for Building Flexible Heaters
April 12, 2017 | John Talbot, Tramonto CircuitsEstimated reading time: 1 minute

Introduction
An electronic heater is created by driving electric current through a resistive element. As the current is drawn through the element, some of the energy is expelled as heat. That heat can then be transferred to other surfaces with positive effects. It is a convenient way to keep components above damaging temperatures or to heat surfaces to a specified temperature and keep them there. Some of the first heaters were simple nickel-chromium wires attached to a power source and wrapped around a mass to transfer heat. This is effective, but not practical in all applications. Heaters that are designed on flexible material can be attached to flat surfaces, equipped with temperature sensing devices, and monitored constantly so that adjustments are possible as the ambient surroundings change. Two types of flexible heater material are common: silicon rubber and polyimide. This article will focus on flexible polyimide heaters.
Common Uses
Flexible heaters are used to keep components, typically microprocessors, at a consistent temperature in devices that are exposed to conditions that have varying temperatures. They are used to heat surfaces as well. For instance, the seat or steering wheel in your car. Biological samples are sometimes better analyzed at the typical body temperature for a human or animal. Batteries and electronics in aircraft that must operate normally at 30,000 feet above the earth are kept warm with flexible heaters.
Handheld electronics as well as ATMs that must operate accurately in cold climates will use flexible heaters to keep critical components in the specified temperature range. The uses are not trivial and one may say critical in many applications. No matter the product or what function it provides, flexible heaters are an important element in the electronics industry.
Design Criteria
For a flexible heater to be designed accurately, we must first understand several things:
- The material to be heated
- The temperature range of the product’s surroundings
- How fast the heat must be transferred to the material
To read the full version of this article which appeared in the March 2017 issue of The PCB Magazine, click here.
Suggested Items
CEE PCB Appoints Markus Voeltz to Business Development Director Europe
04/02/2025 | CEE PCBCEE PCB, a leading manufacturer of printed circuit boards (PCBs) and flexible printed circuits (FPCs) with 3 production facilities in China, is expanding its presence in Europe and began providing local support in March 2025. With 25 years of experience in the industry, the company is enhancing its commitment to European customers by providing more direct collaboration for technical inquiries and advice.
Flexible Thinking: The Key to a Successful Flex Circuit Design Transfer
03/26/2025 | Joe Fjelstad -- Column: Flexible ThinkingThis month, I will discuss the most common design errors that fabricators see, typical areas of miscommunication between design and fabrication, and what designers can do to avoid putting their jobs on hold. This is no simple task, given the many things that can go wrong in flex circuit manufacturing, but many of these issues originate in the design process.
Flexible Thinking: Flexible Circuit Technology—Looking Back and Forward
03/03/2025 | Joe Fjelstad -- Column: Flexible ThinkingFlexible circuit technology came on the scene as a solution largely for niche applications, however, the technology has emerged in recent years as a cornerstone of modern electronics. Today, the technology is enabling a broad range of new product designs across industries. From wearable devices and medical implants to foldable smartphones and numerous automotive applications, flexible circuits are arguably at the heart of much of the next generation of innovations.
Pusan National University Develops One-Step 3D Microelectrode Technology for Neural Interfaces
02/28/2025 | PRNewswireNeural interfaces are crucial in restoring and enhancing impaired neural functions, but current technologies struggle to achieve close contact with soft and curved neural tissues. Researchers at Pusan National University have introduced an innovative method—microelectrothermoforming (μETF)—to create flexible neural interfaces with microscopic three-dimensional (3D) structures.
Growth and Innovation at FCT
02/26/2025 | Marcy LaRont, I-Connect007During DesignCon, I met with Tony Plemel, senior applications engineer at Flexible Circuit Technologies (FCT), to discusses the company’s growth and expansion opportunities, including its expansion of its inTFlex EMS facility. In this interview, Tony explains how FCT’s commitment to customer service and focus on communication and responsiveness allow the company to leverage its capabilities for continued expansion.