Crucial Considerations for Building Flexible Heaters
April 12, 2017 | John Talbot, Tramonto CircuitsEstimated reading time: 1 minute

Introduction
An electronic heater is created by driving electric current through a resistive element. As the current is drawn through the element, some of the energy is expelled as heat. That heat can then be transferred to other surfaces with positive effects. It is a convenient way to keep components above damaging temperatures or to heat surfaces to a specified temperature and keep them there. Some of the first heaters were simple nickel-chromium wires attached to a power source and wrapped around a mass to transfer heat. This is effective, but not practical in all applications. Heaters that are designed on flexible material can be attached to flat surfaces, equipped with temperature sensing devices, and monitored constantly so that adjustments are possible as the ambient surroundings change. Two types of flexible heater material are common: silicon rubber and polyimide. This article will focus on flexible polyimide heaters.
Common Uses
Flexible heaters are used to keep components, typically microprocessors, at a consistent temperature in devices that are exposed to conditions that have varying temperatures. They are used to heat surfaces as well. For instance, the seat or steering wheel in your car. Biological samples are sometimes better analyzed at the typical body temperature for a human or animal. Batteries and electronics in aircraft that must operate normally at 30,000 feet above the earth are kept warm with flexible heaters.
Handheld electronics as well as ATMs that must operate accurately in cold climates will use flexible heaters to keep critical components in the specified temperature range. The uses are not trivial and one may say critical in many applications. No matter the product or what function it provides, flexible heaters are an important element in the electronics industry.
Design Criteria
For a flexible heater to be designed accurately, we must first understand several things:
- The material to be heated
- The temperature range of the product’s surroundings
- How fast the heat must be transferred to the material
To read the full version of this article which appeared in the March 2017 issue of The PCB Magazine, click here.
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Flexible Electronics Market to Reach $66.9 Billion by 2032, Growing at a CAGR of 9.2% from 2025
06/30/2025 | PRNewswireThe flexible electronics market is projected to reach $66.9 billion by 2032, up from an estimated $38.4 billion in 2025, growing at a robust CAGR of 9.2% during the forecast period.
All Flex Solutions Upgrades Lamination Layup
06/22/2025 | All Flex SolutionsAll Flex Solutions has invested in Ulrich Rotte lamination layup stations in their rigid flex layup area. The Ulrich Rotte stations automate the layup process by handling the lamination plates, which are heavy, and sequencing the layup process for the operators.
SEMI FlexTech Solicits Proposals for Advancing the Future of Flexible Hybrid Electronics
06/18/2025 | SEMIFlexTech, a SEMI Technology Community, today issued a Request for Proposals (RFP) to advance flexible hybrid electronics (FHE) technologies, including the development of advanced materials and additive processing.
Roll-to-Roll Technologies for Flexible Devices Set to Grow at 11.5% CAGR
06/11/2025 | GlobeNewswireAccording to the latest study from BCC Research, the “Global Markets for Roll-to-Roll Technologies for Flexible Devices” is expected to reach $69.8 billion by the end of 2029 at a compound annual growth rate (CAGR) of 11.5% from 2024 to 2029.