Phosphorene Reveals Its Superconductivity
April 14, 2017 | University of Illinois at Urbana-ChampaignEstimated reading time: 2 minutes

A new atomically thin material similar to graphene has been proven to be a promising new superconductive material. Black phosphorous - a layered material, somewhat similar to graphite – has generated much excitement among scientists and engineers because of its many interesting and useful electronic and optical properties.
Just as graphite is made up of millions of layers of graphene, black phosphorus consists of layers of phosphorene that can be isolated. New research now reveals phosphorene to possess properties as intriguing as graphene.
Combining graphene and other new 2D materials such as phosphorene, which individually have excellent characteristics complimentary to the extraordinary properties of graphene, has resulted in exciting scientific developments and could produce applications as yet beyond our imagination.
Now phosphorene is helping scientists to answer the question of whether materials consisting of just one layer of atoms can be superconducting.
Superconductors conduct electricity with zero resistance and are always sought after due to their potential applications in sensors, energy-efficient power lines and magnets capable of generating large magnetic fields, such as those used in MRI scanners and levitating trains.
Using phosphorene, a University of Manchester team led by Professor Irina Grigorieva clearly shows that atomically thin materials can be true superconductors as long as enough electrons are pumped into the layers.“
Atomically thin superconductors are desirable in miniature devices but also of much interest to scientists because they can be used to test ideas about the limits of the existence of superconductivity.
Bulk materials often become superconducting if a sufficient amount of electrons is added and they start to strongly interact with each other.
Superconductivity in one atom thick two-dimensional materials was discovered only a decade ago but the findings often referred not to isolated atomically thin layers but their bulk assemblies and the evidence was so far weak and sometimes controversial.
In a report published in Nature Communications, scientists used a process called intercalation – essentially coating phosphorene layers in black phosphorus with different alkali atoms that donate their electrons to phosphorene. In each case this turned black phosphorus into a superconductor with exactly the same properties, irrespective of what kinds of atoms were used to add electrons to the layers of phosphorene.
Prof Irina Grigorieva said: “Nothing like this was known before. This new understanding is important for developing atomically thin materials towards applications in electronics and quantum technologies.”
Renyan Zhang, a PhD student who led the experimental effort, said: “Phosphorene and its parent material, black phosphorus, are in many respects similar to graphene and graphite.
"We expected that each electron-donating metal will produce a different superconductor, as is the case with graphene and graphite. But to our great surprise all metal donors produced exactly the same superconducting material, with identical properties.”
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.