Control of Molecular Motion by Metal-Plated 3D-Printed Plastic Pieces
April 28, 2017 | EPFLEstimated reading time: 3 minutes

EPFL scientists have combined 3D-printing with electroplating to easily produce high-quality metal electrodes that can be used as a molecular beam-splitter.
Many measurement techniques, such as spectroscopy, benefit from the ability to split a single beam of light into two in order to measure changes in one of them. The crucial device that separates the beam is the beam-splitter. These have been mostly limited to light beams, where one uses simply a partially reflective glass. EPFL scientists have now developed a similar device for splitting beams of molecules, where high-voltage electrodes are used to control the motion of the molecules inside a vacuum. The electrodes are built by an innovative method that combines 3D printing and electroplating for the fabrication of complex metallic structures. The same approach can also be used in a wide range of other experiments. The new method is published in Physical Review Applied and overcomes previous fabrication problems thus opening up new avenues.
Sean Gordon and Andreas Osterwalder at EPFL’s Institute of Chemical Sciences and Engineering, developed the new fabrication method, and demonstrated it by constructing the complicated combination of electrodes required to guide and split beams of molecules. The production method not only allows complex shapes to be made but, in addition, speeds up production by a factor of 50-100.
The technique begins by 3D-printing a plastic piece and then electroplating a 10 μm-thick metal layer onto it. Electroplating is an established technique in various branches of industry like the automobile industry, fabrication of jewelry, or plumbing. It generally uses electrolysis to coat a conductive material with a metallic layer. “but the plating of printed pieces has not been done before in the context of scientific applications,” says Andreas Osterwalder.
To make the printed plastic pieces conductive and thus amenable to electroplating, they were first pre-treated by a special procedure developed by the company Galvotec near Zurich. Once the first conductive layer was applied, the pieces could be treated as if they were metallic. The first step can be applied selectively to certain regions of the printed piece, so that the final device contains some areas that are metallic and conductive while others remain insulating.
This process enabled the researchers to build two electrically independent high-voltage electrodes from a single printed plastic piece and with the correct geometry for beam-splitting. Meanwhile, the procedure allows an almost free choice of the coating metal, including some that would be very hard to machine.
This approach also produced surfaces that have no scratches, recesses or abrasions. The molecular beam-splitter used to prove the new method is a structure based on very complex electrodes that require impeccable surface properties and high-precision alignment. “All of which comes for free when using the 3D-printing approach,” says Andreas Osterwalder.
Along with cost, the new 3D printing/electroplating method also drastically reduces production time: Traditional manufacturing for such structures can often take several months. But in the EPFL study, all the components were printed within 48 hours and electroplating only took a day. The shorter time allows for very fast turnover and more flexibility in the development and testing of new components.
Finally, 3D printing uses an entirely digital workflow — the electrodes are printed directly from a computer and require no manual input. This means that an exact replica of a complete experimental setup can be reproduced anywhere by simply transferring a computer file.
The new fabrication method highlights the enormous potential that 3D printers have for fundamental research, in a variety of research areas. It especially demonstrates that we can now quickly produce chemically robust electrically conductive pieces with high precision and at low cost since 3D printing is virtually unlimited in terms of design and the geometry of structures.
Suggested Items
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Real Time with... IPC APEX EXPO 2025: Transition Automation Focusing on Security Coatings and Squeegee Technology
04/16/2025 | Real Time with...IPC APEX EXPOMark Curtin, President of Transition Automation, gives an update on recent innovations at his company. He highlights a record sales month and their new focus on security coatings to fight counterfeiting. Mark explains the engineering behind their durable squeegees, the importance of maintenance, and the value of considering overall costs over just price.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Flexible Thinking: Flexible Circuit Technology—Looking Back and Forward
03/03/2025 | Joe Fjelstad -- Column: Flexible ThinkingFlexible circuit technology came on the scene as a solution largely for niche applications, however, the technology has emerged in recent years as a cornerstone of modern electronics. Today, the technology is enabling a broad range of new product designs across industries. From wearable devices and medical implants to foldable smartphones and numerous automotive applications, flexible circuits are arguably at the heart of much of the next generation of innovations.
Yamaha Motor to Launch New YRP10e Entry-Level Solder Paste Printer
02/26/2025 | Yamaha Motor Europe Robotics, SMT SectionYamaha Motor Europe Robotics SMT Section announces that it will release the new YRP10e solder paste printer on April 1 of this year.