Hybrid Digital-Analog Circuits Can Increase Computational Power of Chaos-Based Systems
May 1, 2017 | North Carolina State UniversityEstimated reading time: 2 minutes

New research from North Carolina State University has found that combining digital and analog components in nonlinear, chaos-based integrated circuits can improve their computational power by enabling processing of a larger number of inputs. This “best of both worlds” approach could lead to circuits that can perform more computations without increasing their physical size.
Computer scientists and designers are struggling to keep up with Moore’s law, which states that the number of transistors on an integrated circuit will double every two years in order to meet processing demands. They are rapidly reaching the limits of physics in terms of transistor size – it isn’t possible to continue shrinking the transistors to fit more on a chip.
Chaos-based, nonlinear circuits have been proposed as a solution to the problem, as one circuit can perform multiple computations instead of the current “one circuit, one task” design. However, the number of inputs that can be processed in chaos-based computing is limited by ambient noise, which decreases accuracy. Ambient noise refers to random signal fluctuations that can be caused by temperature variations, voltage fluctuations or semiconductor defects.
“Noise has always been a big problem in almost all engineering applications including computing devices and communications,” says Vivek Kohar, postdoctoral research scholar at NC State and lead author of a paper describing the work. “Our system is nonlinear and so noise can be even more problematic.”
To address the problem, the researchers created a hybrid system which uses a digital block of AND gates and an analog nonlinear circuit to distribute the computation between the digital and analog circuits. The result is an exponential reduction in computational time, which means that the output can be measured while the noise-based deviations are still small. In short, the computations are performed so quickly that noise doesn’t have time to affect their accuracy.
To further improve the accuracy, Kohar and his colleagues’ proposed solution couples multiple systems. This coupling provides a safety net that reduces the effect of noise-based deviations at the final stage.
“Think about mountaineering,” says Kohar. “The climbers can climb individually but if one slips then he/she may have a dangerous fall. So they use ropes to connect them with each other. If one slips, the others will prevent their fall. Our system is somewhat like this, where all the systems are connected with each other all the time.
“The systems are tuned in such a way that at the time of measurement, our system is at the maxima or minima – the points where the effects of noise are low in general and much lower if the systems are coupled. Considering the mountaineering example again, this means that we take the averages of climbers when they are at resting locations like the peak or in a valley, where the distances between them are smallest.”
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.