Discovery of Thin Transparent Film Could Improve Electronics and Solar Cell
May 8, 2017 | University of MinnesotaEstimated reading time: 2 minutes

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful electronics, as well as more efficient solar cells.
Researchers say that what makes this new material so unique is that it has a high conductivity, which helps electronics conduct more electricity and become more powerful. But the material also has a wide bandgap, which means light can easily pass through the material making it optically transparent. In most cases, materials with wide bandgap, usually have either low conductivity or poor transparency.
“The high conductivity and wide bandgap make this an ideal material for making optically transparent conducting films which could be used in a wide variety of electronic devices, including high-power electronics, electronic displays, touch screens and even solar cells in which light needs to pass through the device,” said Bharat Jalan, a University of Minnesota chemical engineering and materials science professor and the lead researcher on the study.
Currently, most of the transparent conductors in our electronics use a chemical element called indium. The price of indium has generally gone up over the last two decades, which has added to the cost of current display technology. As a result, there has been a tremendous effort to find alternative materials that work as well, or even better, than indium-based transparent conductors.
In this study, researchers found a solution. They developed a new transparent conducting thin film using a novel synthesis method, in which they grew a BaSnO3 thin film (a combination of barium, tin and oxygen, called barium stannate), but replaced elemental tin source with a chemical precursor of tin. The chemical precursor of tin has unique, radical properties that enhanced the chemical reactivity and greatly improved the metal oxide formation process. Both barium and tin are significantly cheaper than indium and are abundantly available.
“We were quite surprised at how well this unconventional approach worked the very first time we used the tin chemical precursor,” said University of Minnesota chemical engineering and materials science graduate student Abhinav Prakash, the first author of the paper. “It was a big risk, but it was quite a big breakthrough for us.”
Jalan and Prakash said this new process allowed them to create this material with unprecedented control over thickness, composition, and defect concentration and that this process should be highly suitable for a number of other material systems where the element is hard to oxidize. The new process is also reproducible and scalable.
They further added that it was the structurally superior quality with improved defect concentration that allowed them to discover high conductivity in the material. They said the next step is to continue to reduce the defects at the atomic scale.
“Even though this material has the highest conductivity within the same materials class, there is much room for improvement in addition, to the outstanding potential for discovering new physics if we decrease the defects. That’s our next goal,” Jalan said.
The research was funded by the National Science Foundation (NSF), Air Force Office of Scientific Research (AFOSR), and U.S. Department of Energy.
In addition to Jalan and Prakash, the research team included Peng Xu, University of Minnesota chemical engineering and materials science graduate student; Cynthia S. Lo, Washington University assistant professor; Alireza Faghaninia, former graduate student at Washington University; Sudhanshu Shukla, researcher at Lawrence Berkeley National Laboratory and Nanyang Technological University; and Joel W. Ager III, Lawrence Berkeley National Laboratory and University of California Berkeley adjunct professor.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
A.R.T. Invests in Latest Equipment to Further Enhance Electronics Training Facilities
09/17/2025 | A.R.T. Ltd.Advanced Rework Technology Ltd. (A.R.T.), a leading independent IPC-accredited training provider, has announced a series of new equipment investments at its state-of-the-art training centre.
Richardson Electronics Appoints Daniel Albers to Drive Made-in-USA Contract Manufacturing Expansion
09/17/2025 | Globe NewswireRichardson Electronics, Ltd., a global provider of engineered solutions for the green energy, power management, and custom display markets, announced the appointment of Daniel Albers to spearhead business development for its expanded, Made-in-USA contract manufacturing efforts.
STMicroelectronics to Advance Next-generation Chip Manufacturing Technology with New PLP Pilot Line in Tours, France
09/17/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications, today announced new details regarding the development of the next generations of Panel-Level Packaging (PLP) technology through a pilot line in its Tours site, France, which is expected to be operational in Q3 2026.
Indium President and CEO to Deliver ELCINA CEO Forum Keynote at Productronica India
09/17/2025 | Indium CorporationIndium Corporation President and CEO Ross Berntson will deliver the Electronic Industries Association of India (ELCINA) CEO Forum keynote at Productronica India, to be held September 17-19 in Bengaluru, India.
TTCI and The Training Connection Strengthen Electronics Manufacturing with Test Services and Training at PCB West 2025
09/16/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a trusted provider of electronic test and manufacturing solutions, and The Training Connection LLC (TTC-LLC) will exhibit at PCB West 2025, taking place Wednesday, October 1, 2025, at the Santa Clara Convention Center in California. Visitors are invited to Booth 113 to explore the companies’ complementary expertise in test engineering services and workforce development for the electronics industry.