Printed 'Coffee Rings' Avoided with Nanofibers
May 10, 2017 | ACN NewswireEstimated reading time: 1 minute

Drying is an important part of printing words and electronics. Particles suspended in liquid are applied to a surface and the liquid evaporates leaving the particles behind.
Photographs of dried colloidal mixtures of polystyrene particles (diameter 1.4 um) and cellulose fibers (diameter ca. 20 nm, length ca. 1 um). The polystyrene concentration is fixed at 0.1 wt%, and that of cellulose is 0 (a), 0.01 (b) and 0.1 wt% (c).
Many times, the particles dry unevenly because of the so-called 'coffee ring effect'. Much like when spilled coffee dries up and leaves behind a hollow ring, particles tend to move to the outside of the liquid droplet. This is a problem, particularly for printed electronics, which require uniform application of a liquid for maximum performance.
Cellulose nanofibers offer an environmentally friendly and effective solution to this problem, explain researchers from Japan in a paper recently published in Science and Technology of Advanced Materials.
The researchers tested three different concentrations of cellulose nanofibers added to a solution with suspended particles. They also tried increasing the particle concentration in a solution with no added nanofibers. They photographed the drying process under a microscope over time.
The solutions with nanofibers dried much more evenly than those without. Instead of a hollow ring, the particles condensed into a solid dot, slightly shrinking in size as the liquid evaporated. Particles in the mixtures with nanofibers also moved at a consistent pace. There was no final rush to the periphery as was observed in the solutions without nanofibers.
The researchers conclude that cellulose nanofibers can improve the drying process and avoid problems stemming from uneven drying, such as degradation of paint coatings, clarity of printed characters on paper, and conductivity of printed electronics.
Once the solution dries, the nanofibers are left behind along with the desired particles. How the nanofibers impede or benefit material performance is a topic for further research.
"The addition of cellulose nanofibers may alter the electrical resistivity of conductive wires in the printed electronics, but the fine tuning of the concentration might be exploited for the control of electric resistivity itself," write the research team from Tokyo University of Agriculture and Technology, and Nagoya University.
Suggested Items
Datest Expands Presence in the Upper Midwest with Omni-Tec Partnership
05/05/2025 | DatestDatest, a trusted leader in advanced testing, engineering, inspection, and failure analysis services, is proud to announce its partnership with Gary Krieg of Omni-Tec, Inc. as its official sales representative in the Upper Midwest.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
DuPont Reports First Quarter 2025 Results
05/02/2025 | PRNewswireDuPont announced its financial results for the first quarter ended March 31, 2025.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
Alternative Manufacturing Inc. (AMI) Appoints Gregory Picard New Business Development Manager
05/01/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing Inc. (AMI) is pleased to announce the appointment of Mr. Gregory Picard as our new Business Development Manager. Picard brings a wealth of experience in Sales and Business Development, having worked with some of the most prominent names in the industry.