Conductive Paper Could Enable Future Flexible Electronics
May 18, 2017 | ACSEstimated reading time: 1 minute
Roll-up computer screens and other flexible electronics are getting closer to reality as scientists improve upon a growing number of components that can bend and stretch. One team now reports in the journal ACS Applied Materials & Interfaces another development that can contribute to this evolution: a low-cost conductive paper that would be easy to manufacture on a large scale.
Current flexible electronic prototypes are commonly built using polymer thin films. But the cost of these films becomes a factor when they are scaled up. To address this issue, scientists have turned to paper, which is renewable, biodegradable and a fraction of the cost of polymer thin films. The downside of paper is that it’s not conductive, and efforts so far to infuse it with this property have been hindered by scalability and expense. Bin Su, Junfei Tian and colleagues wanted to come up with a new approach.
Using a conventional roller process that’s easy to scale up, the researchers coated paper with soft ionic gels to make it conductive. They sandwiched an emissive film between two layers of the ionic gel paper. When they applied a voltage, the device glowed blue, indicating that electricity was being conducted. It also showed electrical durability, withstanding more than 5,000 cycles of bending and unbending with negligible changes in performance and lasting for more than two months. The researchers say their conductive paper, which costs about $1.30 per square meter and could be fabricated at a rate of 30 meters per minute, could become an integral part of future flexible electronics.
The authors acknowledge funding from the State Key Laboratory of Pulp and Paper Engineering (China), National Natural Science Foundation of China and the Australian Research Council’s Discovery Early Career Researcher Award.
Suggested Items
Subdued Electronics Industry Sentiment Continues in November
11/25/2024 | IPCIPC releases November 2024 Global Sentiment of the Electronics Manufacturing Supply Chain report
Process Yield Statistics and Distributions
11/25/2024 | Dr. Pat Valentine, UyemuraThe costs of poor quality include all expenses incurred for not making or providing a perfect product the first time, including scrap, rework, re-purchasing raw materials, labor, and inventory. Companies operating at a three-sigma quality level can spend about 25% of their annual sales remediating poor quality costs. Other estimates put the costs of poor quality in the range of 25–40%. Poor quality can destroy a company.
PCB007 Magazine: November 2024—Engineering Economics
11/18/2024 | I-Connect007 Editorial TeamThe real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Marcy's Musings: Engineering Economics
11/19/2024 | Marcy LaRont -- Column: Marcy's MusingsThe real cost to manufacture a PCB, sometimes referred to as the "loaded cost," encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. Happy Holden calls it "Engineering Economics," and dedicated a chapter in his book, 24 Essential Skills for Engineers, to the subject.
BOOK EXCERPT: The Printed Circuit Designer’s Guide to... DFM Essentials, Chapter 2
11/14/2024 | I-Connect007 Editorial TeamThe guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter discusses panelization, placing PCBs on manufacturing panels, highlighting features like coupons, borders, and scoring to maximize material utilization and reduce costs, and detailing preferred panel sizes and modifications.