Floating Fields for Fine Fabrication
May 18, 2017 | A*STAREstimated reading time: 2 minutes

Magnetic levitation (Maglev) is well known for its use in high-speed rail networks, but could also be applied at smaller scales in medicine and electronics. To do so, researchers must be able to precisely control electromagnetic fields so that they can move and rotate objects without touching them.
The levitating platform developed by Teo and co-workers contains arrays of permanent magnets floating above several coils of wire. The movement of the platform is controlled by varying the current in the coils.
Now, Teo Tat Joo and co-workers at the A*STAR Singapore Institute of Manufacturing Technology (SIMTech) and National University of Singapore have developed a Maglev system that can produce linear and rotational motion in all three dimensions1. This system provides nanometer-scale precision in these movements, and is simpler and potentially less energy-intensive than other recent attempts.
“Today’s existing precision mechatronics systems can only be classified as having one micrometer positioning accuracy over one meter — one part-per-million or 1 PPM,” says Teo. “On the other hand, Maglev technology has the potential to achieve a truly nanometer positioning system — 0.001 PPM.”
To build their new Maglev system, Teo and co-workers employed a special arrangement of permanent magnets called a Halbach array, which produces a strong magnetic field on one side but not the other. They positioned four Halbach arrays on a square platform above several energized coils of wire (see image), and used analytical force modeling to work out how the magnets and coils would interact. Then, by carefully controlling the electrical current in different coils, they were able to move or rotate the square platform at several different speeds (see video), with a positional error of just 50 nanometers.
The video demonstrates precisely-controlled linear and circular motion of the levitating platform at various speeds.
“One of the main technical challenges we faced was that the large number of coils, with high electrical resistance, require a high power supply,” says Teo. “We are currently developing a scheme that allows selective switching of the coils; this will improve the energy efficiency and significantly reduce the cost of the Maglev system.”
Perhaps the most promising uses of the Maglev system developed by the A*STAR team would be in processes that require a particle-free or vacuum environment, as Teo explains: “The contactless nature of Maglev ensures that no contaminating particles are generated from friction between surfaces. For example, future wafer lithography processes such as extreme UV lithography, which operates in a vacuum, will require a Maglev system to handle the wafer.”
Teo also suggests that Maglev technology could replace conventional conveyor belts in factories. Unlike traditional conveyors that can only move objects on pre-defined tracks, Maglev could move several objects simultaneously to different desired locations.
Suggested Items
Northrop Grumman’s IVEWS Completes F-16 Electronic Warfare Operational Assessment
05/05/2025 | Northrop GrummanNorthrop Grumman Corporation’s IVEWS (Integrated Viper Electronic Warfare Suite) has successfully completed Operational Assessment flight testing on U.S. Air Force F-16 aircraft, demonstrating its effectiveness against advanced radar-guided threats.
INVISIO Further Expands Capability of Market-Leading Wireless Intercom System
05/05/2025 | INVISIOTactical communications expert INVISIO is expanding the capability of its market-leading intercom system made for tailored user and radio communication. The expansion will deliver enhanced mobility, flexibility, interoperability and functionality for mission-critical users.
L3Harris, Thales Develop Next-Generation SHORAD Capability
05/05/2025 | L3Harris TechnologiesL3Harris Technologies has signed a memorandum of understanding with Thales UK to develop an integrated short-range air defence (SHORAD) command and control capability.
Lockheed Martin Completes Orion Development for Artemis II Moon Mission
05/05/2025 | Lockheed MartinLockheed Martin has completed assembly and testing of NASA's Orion Artemis II spacecraft, transferring possession to NASA's Exploration Ground Systems (EGS) team.
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.