Using Graphene to Create Quantum Bits
May 18, 2017 | EPFLEstimated reading time: 1 minute

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.
In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based quantum capacitor, compatible with cryogenic conditions of superconducting circuits, and based on two-dimensional (2D) materials.
When connected to a circuit, this capacitor has the potential to produce stable qubits and also offers other advantages, such as being relatively easier to fabricate than many other known nonlinear cryogenic devices, and being much less sensitive to electromagnetic interference.
This research was published in 2D Materials and Applications.
Normal digital computers operate on the basis of a binary code composed of bits with a value of either 0 or 1. In quantum computers, the bits are replaced by qubits, which can be in two states simultaneously, with arbitrary superposition. This significantly boosts their calculation and storage capacity for certain classes of applications. But making qubits is no mean feat: quantum phenomena require highly controlled conditions, including very low temperatures.
To produce stable qubits, one promising approach is to use superconducting circuits, most of which operate on the basis of the Josephson effect. Unfortunately, they are difficult to make and sensitive to perturbing stray magnetic fields. This means the ultimate circuit must be extremely well shielded both thermally and electromagnetically, which precludes compact integration.
At EPFL's LPQM, this idea of a capacitor that's easy to make, less bulky and less prone to interference has been explored. It consists of insulating boron nitride sandwiched between two graphene sheets. Thanks to this sandwich structure and graphene's unusual properties, the incoming charge is not proportional to the voltage that is generated. This nonlinearity is a necessary step in the process of generating quantum bits.
This device could significantly improve the way quantum information is processed but there are also other potential applications too. It could be used to create very nonlinear high-frequency circuits -- all the way up to the terahertz regime -- or for mixers, amplifiers, and ultra strong coupling between photons.
Provided by: Ecole Polytechnique Federale de Lausanne (EPFL)
EPFL
Suggested Items
Keysight Enabling University of Stuttgart to Advance 6G Integrated Circuits Research
08/10/2023 | Keysight Technologies, Inc.Keysight Technologies, Inc. is enabling the University of Stuttgart to conduct foundational research essential to development of new integrated circuits (IC) for 6G technology with the new Keysight 6G Vector Component Analysis (VCA) solution.
KSG Group Puts Horizontal OSP Line for Organic Surfaces into Operation
07/31/2023 | KSG GroupThe KSG Group has expanded its capacities in the field of organic surface coating by bringing a new wet-chemical horizontal system online.
Mil/Aero Design: Not Just Another High-Rel Board
07/25/2023 | Andy Shaughnessy, Design007 MagazineMeijing Liu, CID+, is a senior PCB designer for Microart Services, an EMS company in Markham, Ontario, Canada. She recently took a six-week military/aerospace PCB design class from IPC’s Kris Moyer, and she was surprised at how much content she was able to absorb in such a short time. I spoke with Meijing and we discussed some of her takeaways from the class, and how it has inspired her to pursue more design education in the future.
MACOM Awarded U.S. Air Force Contract for Advanced Semiconductor Development
07/20/2023 | Business WireMACOM Technology Solutions Inc., a leading supplier of semiconductor products, announced that it has been awarded a contract from the United States Air Force Research Laboratory (“AFRL”) to develop advanced semiconductor process technology related to Gallium Nitride-on-Silicon Carbide (“GaN-on-SiC”).
Standard of Excellence: Today’s Hottest Technology Trends
07/21/2023 | Anaya Vardya -- Column: Standard of ExcellenceNo matter what anyone says, printed circuit boards are the backbone of modern electronics. Without the PCB, what will the components attach to? Without advancements in printed circuit board technology, products of the future would be impossible. It is our responsibility to be there when our customers need us—today and in the future. That means recognizing the latest trends and making the most of them. Here's what I see is trending in microelectronics.