The Heart: A Tomb for Tiny Pacemakers? Not If We Make Them Battery Free
May 19, 2017 | University at BuffaloEstimated reading time: 2 minutes

Like conventional pacemakers, tiny new lead less pacemakers are designed to work for about 12 years.
But because these devices are placed inside the heart — as opposed to a cavity in the chest — tissue grows around them. As a result, retrieving these devices for a battery replacement might not always be possible. Instead, doctors may allow old pacemakers to pile up inside the heart while inserting new devices as needed.
There is no known danger associated with this practice, but Hooman Ansari, a PhD candidate at the University at Buffalo’s School of Engineering and Applied Sciences, is working on a tidy solution.
Working under the supervision of M. Amin Karami, assistant professor in UB’s Department of Mechanical and Aerospace Engineering and director of the Intelligent Dynamic Energy and Sensing Systems Lab (IDEAS Lab), Ansari and colleagues are developing a piezoelectric system that converts the heart’s vibrational energy into electricity to power pacemakers.
“What we’re proposing would make receiving a pacemaker a one-and-done type procedure that could take as a little as 15 minutes,” says Ansari. “In the United States alone, about 200,000 people receive battery replacements for their pacemakers every year. We could eliminate these procedures, saving the health care system untold amounts of money and limiting patient risk that occurs with these procedures.”
Unlike conventional pacemakers, leadless pacemakers are about the size of an AAA battery. They are delivered via a catheter through the leg to the heart, where they regulate the heart beat and blood flow.
An initial device that the IDEAS Lab built and tested is roughly 1 centimeter cubed and shaped like the letter S. Results show it produces sufficient power (at least 10 microwatts) for heart rates from 20 to 100 beats per minute. It does not use magnetics, making it compatible with MRI machines.
A new device they are working on is even smaller. It’s a piezoelectric strip, about a half-centimeter long, that’s designed to buckle as it absorbs vibrational energy from the heart. Simulations suggest it will be capable of generating enough energy to power a heart rate up to 150 beats per minute.
The researcher’s next step is to conduct physical experiments on the new device, and to develop a way to attach a backup power source to the device.
The research was supported by UB’s Clinical and Translational Science Institute’s pilot studies program under an award from the National Institutes of Health. The pilot studies program provides seed money to help advance promising new technologies and therapeutics from the conceptual stage to clinical studies.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.
RTX, the Singapore Economic Development Board Sign MOU Outlining 10-year Growth Roadmap
06/20/2025 | RTXRTX and the Singapore Economic Development Board (EDB) have signed a Memorandum of Understanding (MoU) which outlines a 10-year roadmap to further long-term strategic collaboration in Singapore.
Indra Signs Agreement with AXISCADES to Boost Production of Cutting-Edge Systems in India
06/18/2025 | PRNewswireParis Air Show -- Indra and the Indian technology company AXISCADES have signed an agreement to collaborate on the production of solutions for the aerospace and defense markets.
GKN Aerospace Delivers First High Voltage EWIS System for Clean Aviation’s SWITCH Project
06/16/2025 | GKN AerospaceGKN Aerospace has completed and delivered the first high voltage Electrical Wiring Interconnection System (EWIS) for the Clean Aviation SWITCH project.