The Heart: A Tomb for Tiny Pacemakers? Not If We Make Them Battery Free
May 19, 2017 | University at BuffaloEstimated reading time: 2 minutes
Like conventional pacemakers, tiny new lead less pacemakers are designed to work for about 12 years.
But because these devices are placed inside the heart — as opposed to a cavity in the chest — tissue grows around them. As a result, retrieving these devices for a battery replacement might not always be possible. Instead, doctors may allow old pacemakers to pile up inside the heart while inserting new devices as needed.
There is no known danger associated with this practice, but Hooman Ansari, a PhD candidate at the University at Buffalo’s School of Engineering and Applied Sciences, is working on a tidy solution.
Working under the supervision of M. Amin Karami, assistant professor in UB’s Department of Mechanical and Aerospace Engineering and director of the Intelligent Dynamic Energy and Sensing Systems Lab (IDEAS Lab), Ansari and colleagues are developing a piezoelectric system that converts the heart’s vibrational energy into electricity to power pacemakers.
“What we’re proposing would make receiving a pacemaker a one-and-done type procedure that could take as a little as 15 minutes,” says Ansari. “In the United States alone, about 200,000 people receive battery replacements for their pacemakers every year. We could eliminate these procedures, saving the health care system untold amounts of money and limiting patient risk that occurs with these procedures.”
Unlike conventional pacemakers, leadless pacemakers are about the size of an AAA battery. They are delivered via a catheter through the leg to the heart, where they regulate the heart beat and blood flow.
An initial device that the IDEAS Lab built and tested is roughly 1 centimeter cubed and shaped like the letter S. Results show it produces sufficient power (at least 10 microwatts) for heart rates from 20 to 100 beats per minute. It does not use magnetics, making it compatible with MRI machines.
A new device they are working on is even smaller. It’s a piezoelectric strip, about a half-centimeter long, that’s designed to buckle as it absorbs vibrational energy from the heart. Simulations suggest it will be capable of generating enough energy to power a heart rate up to 150 beats per minute.
The researcher’s next step is to conduct physical experiments on the new device, and to develop a way to attach a backup power source to the device.
The research was supported by UB’s Clinical and Translational Science Institute’s pilot studies program under an award from the National Institutes of Health. The pilot studies program provides seed money to help advance promising new technologies and therapeutics from the conceptual stage to clinical studies.
Suggested Items
RTX’s Pratt & Whitney Establishes European Technology and Innovation Center in the Netherlands
01/27/2025 | RTXRTX’s Pratt & Whitney announced plans to establish a European Technology and Innovation Center (ETIC) dedicated to advancing technologies for enabling more energy efficient and sustainable aviation.
TopLine’s Martin Hart to Present at Microelectronics Reliability and Qualification Workshop (MRQW)
01/16/2025 | TopLine CorporationTopLine Corporation’s Founder and CEO Martin Hart has been invited to deliver a presentation on the topic of how “Braided Solder Columns reduce mechanical stress in large heterogeneous 2.5D advanced packages for space and commercial applications” at The Aerospace Corporation’s Microelectronics Reliability and Qualification Workshop (MRQW) in Los Angeles (El Segundo), California on February 12, 2025.
Merlin Circuit Technology Achieves Prestigious JOSCAR Accreditation
01/14/2025 | Merlin Circuit TechnologyMerlin Circuit Technology is proud to announce it has been awarded the coveted Joint Approvals Group for Industry (JAG) Standard 001 (JOSCAR) accreditation.
FTG Aerospace Tianjin Approved as an AMO by CAAC
01/08/2025 | Globe NewswireFiran Technology Group Corporation, a leading provider of electronic products and avionic sub-systems for the aerospace and defense markets, has received approval from Civil Aviation Administration of China to be an Approved Maintenance Organization (AMO).
GKN Aerospace Officially Opens $55 Million Repair Facility for Aero-Engine Components in San Diego
01/02/2025 | GKN AerospaceGKN Aerospace has opened a new 150,000 square-foot facility in San Diego, California, strengthening the company’s global repair network and commitment to sustainable, cutting-edge MRO solutions.