The Heart: A Tomb for Tiny Pacemakers? Not If We Make Them Battery Free
May 19, 2017 | University at BuffaloEstimated reading time: 2 minutes

Like conventional pacemakers, tiny new lead less pacemakers are designed to work for about 12 years.
But because these devices are placed inside the heart — as opposed to a cavity in the chest — tissue grows around them. As a result, retrieving these devices for a battery replacement might not always be possible. Instead, doctors may allow old pacemakers to pile up inside the heart while inserting new devices as needed.
There is no known danger associated with this practice, but Hooman Ansari, a PhD candidate at the University at Buffalo’s School of Engineering and Applied Sciences, is working on a tidy solution.
Working under the supervision of M. Amin Karami, assistant professor in UB’s Department of Mechanical and Aerospace Engineering and director of the Intelligent Dynamic Energy and Sensing Systems Lab (IDEAS Lab), Ansari and colleagues are developing a piezoelectric system that converts the heart’s vibrational energy into electricity to power pacemakers.
“What we’re proposing would make receiving a pacemaker a one-and-done type procedure that could take as a little as 15 minutes,” says Ansari. “In the United States alone, about 200,000 people receive battery replacements for their pacemakers every year. We could eliminate these procedures, saving the health care system untold amounts of money and limiting patient risk that occurs with these procedures.”
Unlike conventional pacemakers, leadless pacemakers are about the size of an AAA battery. They are delivered via a catheter through the leg to the heart, where they regulate the heart beat and blood flow.
An initial device that the IDEAS Lab built and tested is roughly 1 centimeter cubed and shaped like the letter S. Results show it produces sufficient power (at least 10 microwatts) for heart rates from 20 to 100 beats per minute. It does not use magnetics, making it compatible with MRI machines.
A new device they are working on is even smaller. It’s a piezoelectric strip, about a half-centimeter long, that’s designed to buckle as it absorbs vibrational energy from the heart. Simulations suggest it will be capable of generating enough energy to power a heart rate up to 150 beats per minute.
The researcher’s next step is to conduct physical experiments on the new device, and to develop a way to attach a backup power source to the device.
The research was supported by UB’s Clinical and Translational Science Institute’s pilot studies program under an award from the National Institutes of Health. The pilot studies program provides seed money to help advance promising new technologies and therapeutics from the conceptual stage to clinical studies.
Suggested Items
Real Time with... IPC APEX EXPO 2025: AI-powered First Article Inspections from GroundControl
04/08/2025 | Real Time with...IPC APEX EXPOMahul Shah introduces GroundControl, CUI-compliant cloud software designed for EMS providers to streamline quality inspection processes in aerospace. This software automates report generation, significantly reducing the time spent on manual data entry and minimizing errors. By incorporating AI, GroundControl enhances efficiency and accuracy, allowing users to access the platform online, book demos, and try it for free.
Acquisition of MADES Strengthens Cicor's Pan-European Leadership in the Aerospace & Defense Sector
04/03/2025 | CicorCicor Group announces that it has signed an agreement to acquire 100% of the shares of Spanish electronics company Malaga Aerospace, Defense & Electronics Systems S.A.U. (MADES). The company focuses on electronic solutions for the aerospace and defense industry, which accounts for well over half of its business.
Vertical Aerospace Adopts Universal Fast-Charging Standard to Accelerate eVTOL Deployment
04/01/2025 | BUSINESS WIREVertical Aerospace (Vertical), a global aerospace and technology company that is pioneering electric aviation, announces it will adopt the Combined Charging Standard (CCS) for the VX4, joining BETA Technologies and Archer Aviation in driving a universal, fast-charging system for electric vertical take-off and landing (eVTOL) aircraft.
Nokia, Honeywell Aerospace Technologies Partner with Numana to Advance Quantum-safe Networks
04/01/2025 | HoneywellNokia and Honeywell Aerospace Technologies announced a strategic partnership with Numana to advance Quantum-Safe Networks (QSN) in Montreal, Canada, and worldwide.
Molex Releases New Report on Strategies for Advancing Rugged, Reliable Connectivity in Modern Aerospace and Defense Applications
04/01/2025 | MolexMolex, a global electronics leader and connectivity innovator, has released a new report from AirBorn, a Molex company, which explores the unrelenting demands for constant, continuous connectivity to support the rigors of modern aerospace, defense and space-industry applications.