Examining Live Brains with New Adaptive-Optics Technology
May 22, 2017 | UNISTEstimated reading time: 1 minute

An international team of researchers, affiliated with UNIST has developed a new type of adaptive-optics (AO) technology for brain research.
This study has been jointly conducted by Professor Jung-Hoon Park of Life Sciences at UNIST in collaboration with Professor Meng Cui of Electrical and Computer Engineering at Purdue University’s West Lafayette, Indiana, United States.
In the study, the research team has developed Multi-Pupil Adaptive Optics (MPAO) to perform high-resolution time-lapse imaging to study changes in functioning brain cells. According to the research team, the idea here is that studying subtly changing images can provide new insights into how the brain works.
This newly-developed AO system enbables simutaneous wavefront correction over a large imaging field-of-view (FOV). In the current implementation, MPAO improves correction area by approximately an order of magnitude over that of conventional methods and allows up to 32 MHz voxel rate at the limit of the laser scanning hardware.
The capability of independent wavefront control for MPAO also enables high-speed nonplanar imaging of 3D dynamics. In the study, the research team applied MPAO to in vivo dynamic imaging of microglia and blood vasculature, and structural and calcium imaging of neuronal network in mammalian brain.
The prototype multi-pupil AO system includes 9 deformable mirrors and a prism array containing 9 faceted segments. Each segment produces its own image corresponding to a different part of a microscope’s field of view. The approach improves the area of AO correction by 9 over a single-deformable-mirror approach; the field of view of the new system is 450 × 450 μm2. The system images voxels at rates up to 32 MHz, limited by the laser-scanning hardware.
“To better understand brain activity, we must look directly at the dynamic connection between brain cells distributed over a wide area,” says Professor Park. “High-resolution in-vivo imaging of dendritic spines is also of great importance in neuroscience because you want to measure these numerous neurons simultaneously at very high speed and also at high spatial resolution.”
The results of the study have been published in the May issue of the renowned scientific journal, Nature Methods (IF=25.328). It was carried out with the support of the National Institutes of Health (NIH) and Purdue University.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
VIDEOTON EAS's Bulgarian Subsidiary Expands Into Automotive Products
09/15/2025 | VideotonVEAS Bulgaria, engaged in electronics manufacturing, has joined the ranks of VIDEOTON companies authorized to produce automotive products.
Variosystems Strengthens North American Presence with Southlake Relaunch 2025
09/15/2025 | VariosystemsVariosystems celebrated the relaunch of its U.S. facility in Southlake, Texas. After months of redesign and reorganization, the opening marked more than just the return to a modernized production site—it was a moment to reconnect with our teams, partners, and the local community.
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.